
Is it an Ontology or an Abstract Syntax?
Modelling Objects, Knowledge and Agent Messages

Stephen Cranefield, Martin Purvis and Mariusz Nowostawski1

Abstract. This paper describes a system of interlinked ontologies
to describe the concepts underlying FIPA agent communication. A
meta-modelling approach is used to relate object-oriented domain
ontologies and abstract models of agent communication and content
languages and to describe them in a single framework. The mod-
elling language used is the Unified Modeling Language, which is
extended by adding the concepts of resource and reference. The re-
sulting framework provides an elegant basis for the development of
agent systems that combine object-oriented information representa-
tion with agent messaging protocols.

1 INTRODUCTION

This paper considers the implications of modelling agents’ domains
of discourse using object-oriented ontologies and how we can inte-
grate the use of object-oriented information with the Foundation for
Intelligent Physical Agents (FIPA) [1] messaging framework. This
leads us to consider the relationship between the different types of
objects that may exist in an agent system at run-time (domain ob-
jects, knowledge objects and message objects) and how their respec-
tive models (ontologies, content languages and agent communication
languages) are related and can be expressed in the same modelling
framework.

Previously [2] we have argued for the use of the industry-standard
object-oriented modelling language, the Unified Modeling Language
(UML) [3], as a representation language for ontologies. The advan-
tages of using UML include the now widely accepted belief that
object-oriented modelling fits well with people’s intuitive models of
the world, the fact that UML has a very large and rapidly growing
user community, and the standard graphical representation for mod-
els that it provides (there is also a standard linear representation de-
fined by the XMI specification [4]). An example of a simple ontology
expressed using UML appears in Figure 1. This depicts an abstract
class Person (with the attribute name) specialised by two subclasses
Man and Woman. Four association relationships between these classes
are shown and at the top of the figure an expression in the Object
Constraint Language constrains the possible instances of these asso-
ciations. In addition, UML’s stereotype mechanism is used to specify
that a Person object is a resource (discussed in Section 2).

Traditionally, software agent communication languages (ACLs)
have been based on the exchange of information represented as sen-
tences in a logic-based content language. The agent communication
language has an outer layer that specifies information needed for
routing the message, understanding the context and parsing the con-

1 Department of Information Science, University of Otago, PO
Box 56, Dunedin, New Zealand. Email: fscranefield, mpurvis,
mnowostawskig@infoscience.otago.ac.nz

name : String

Person

Man Woman

child
*

father

1

F
at

he
r

O
f

child

*

mother

1

M
other

O
f

parent

2

son
*

S
on

 O
f

parent

2

daughter

*

D
aughter O

f

<<invariant>>
if parent.oclType = Man then parent = father else parent = mother endif
if child.oclType = Man then child = son else child = daughter endif

«resource»

Figure 1. An ontology describing family relationships

tent of the message, as well as the type of the communicative act
(e.g. ‘inform’ or ‘request’) represented by the message. The mes-
sage’s content field is then used to store the details of the act as a
string, which must be a well-formed formula in the content language
used and must be parsed by the receiving agent.

The choice of an object-oriented ontology representation language
raises interesting questions about the form in which knowledge
should be stored within an agent and encoded within inter-agent mes-
sages. Instead of translating between object-oriented internal models
and logic-based messages, we believe that a UML object diagram can
be considered to be a declarative representation of knowledge and it
should be possible to include one directly as the content of a mes-
sage [5]. Our approach can be summarised as follows. An ontology
in UML constitutes an abstract syntax for the domain of discourse.
If the content language and ACL used are also defined by an abstract
syntax using UML, then an entire agent message can be expressed
as an object diagram containing nodes corresponding to two differ-
ent types of objects: knowledge objects (the ‘content’ of the mes-
sage) and message objects (the ‘wrapper’). With this viewpoint, we
note that the distinction between an ontology and an abstract syntax
(which defines the concepts that can be expressed in a language) be-
comes blurred when three different types of run-time object (domain,
knowledge and message) are modelled using the same formalism.

Figure 2 shows an example of an agent message expressed as a
UML object diagram. Rectangles denote objects, specifying their
name (corresponding to the name of a variable referencing the ob-
ject, if there is one) and then, after a colon, the class of the object.
The object’s attribute values are also shown, and the lines between
objects depict links: instances of associations between classes.

This diagram can be considered to be an abstraction of a net-

16.1

m : InformRef

name = Agent1

 : RefByName

name = Otago

 : RefByName
sender context

receiver

name = Agent2

 : RefByName

name = Otago

 : RefByName
context

name = bill72

 : RefByName
ref

 : OODefDescriptor

 : ObjectDescriptor

 : LinkEnd

 : Link

 : AttributeValue : LinkEnd

 : ObjectDescriptor

var

instanceinstance

value = John Brown

 : StringValue

value

name = name

 : RefByName

att_name

name = Man

 : RefByName

name = FamilyOntology

 : RefByName

classifier

context

name = Man

 : RefByName

name = FamilyOntology

 : RefByName

context

classifier

name = child

 : RefByName

name = Father Of

 : RefByName

name = father

 : RefByName

role_name role_nameassoc_name

Figure 2. An example message expressed as a UML object diagram

work of interlinked objects in some programming language. It shows
a message object m, of a type that is specialised for informing an
agent that the object corresponding to a given description (the ob-
ject of type OODefDescriptor below m) has a given reference (the
object linked to m with the role ref). The classes appearing in this
diagram will be defined in later diagrams. In particular, the class
OODefDescriptor is proposed as a way of describing an object for
which a reference is required. Its structure encodes an object diagram
comprising object descriptors and links, and in addition it labels the
object being asked about (the var role).

It may seem odd that concepts in the Family ontology only ap-
pear indirectly in this message using a ‘reference by name’ attached
to an object descriptor by a link with a classifier role (“classifier”
is the UML name for the type of an object). However, this is no
different from the traditional mode of passing knowledge as string-
encoded propositions—in that case the receiving agent (or the knowl-
edge representation system inside it) must parse the string to extract
the names of the predicates used, which are considered to be standard
references to the concepts they represent. The end of Section 4 will
discuss a way to provide a more direct encoding of knowledge about
an ontology.

name : String

RefByName
1

*

IOR : String

CORBARef

dereference() : Resource

«type»
Reference

«type»
DataValue

Introduced as abstract
base class for all object-
level primitive types such
as integer, float, etc.

Figure 3. The Data Values ontology with some possible reference types

2 OBJECTS AND REFERENCES

If a UML object diagram is chosen as the basis for knowledge rep-
resentation and/or communication, it is important to avoid confusion
between the objects being represented and their descriptors: the ob-
jects comprising the object diagram. The objects that are the sub-
ject of inter-agent communication may be real world objects, Inter-
net resources, or system objects that the agent wishes to access via
a non-agent based protocol (e.g. CORBA’s IIOP). After receiving a
message describing a domain object, an agent may wish to directly
access or contact that object, e.g. by downloading it if it is a Web
document, sending it a CORBA message if it is a CORBA object,
or engaging it in conversation via a speech interface if it is a person.
This requires the agent to have some sort of reference to the object,
and thus agents must have some way of requesting and communicat-
ing information about object references.

The FIPA ACL has adopted a mechanism for asking and inform-
ing agents about references from the prior work of Sadek [6], based
on the notion of a “denoting phrase” from the philosopher Bertrand
Russell [7]. An agent can ask another agent to inform it of the refer-
ence corresponding to a definite description: a syntactic expression
�x (x) that specifies a property that is assumed to hold of some
unique but unknown object x. The reply to this request is supposed
to be an inform message with the content �x (x) = n where n is
the ‘standard name’ for some object. It is not clear that this notion
of a standard name represented by a constant in the content language
will be adequate for dealing with object references in the full object-
oriented systems sense. We leave that question for future research
and in this paper take a meta-modelling approach to define the types
of entities that ACLs and content languages need to denote.

First, we need to define what a reference is. We do this by extend-
ing the UML notion of a data type—a descriptor for a set of values
that have no identity and cannot be altered. We define a Data Val-
ues ontology (Figure 3) that introduces an abstract class DataValue
and assert that this is the abstract base class for all primitive types
(UML has nothing to say about the primitive types available in a sys-
tem being modelled, except that numbers and strings exist, so assert-
ing that these share a common superclass is a harmless restriction
on our model of the run-time environment of an agent). The class
Reference is then defined as a subclass of DataValue. Figure 3

16.2

ontology (Fig. 3)
Data values

(e.g. Fig. 1)
Domain ontologies

ontologies (e.g. Fig. 6)
Content language

(e.g. Fig. 5)
ACL ontologies

Domain values
(including
references)

Domain objects
and resources

(extended with Resource stereotype)
UML meta-model

(meta-model)
Level 2

Message objects
(e.g. Fig. 2) (objects)

Level 0

(models)
Level 1

Knowledge objects

Figure 4. A meta-modelling perspective on agent messaging

also shows examples of two specific reference types.
Now that the notion of a reference has been introduced in a ‘stan-

dard’ ontology, our domain ontologies can include associations be-
tween domain classes and the Reference class to indicate that ob-
jects of those domain classes can have references. This is likely to be
extremely common in ontologies for use with FIPA agent systems
(where asking for information is expressed using the query-ref

communicative act). Rather than require explicit modelling of these
‘reference of’ associations, we use UML’s stereotype mechanism
to define a ‘virtual’ extension2 of the UML meta-model. We intro-
duce a specialised type of class, called Resource and use an OCL
constraint to declare that any class annotated with the stereotype
“�resource�” will implicitly have a one-to-many association with
the class Reference from our Data Values ontology (Figure 3). The
outcome of this extension is that classes in domain ontologies can
now be annotated with the resource stereotype to indicate that ob-
jects of these classes have references (see Figure 1 for an example).

3 A META-MODELLING VIEW

The following section presents a UML-based abstract syntax for
FIPA-like messages and a related abstract syntax for a content lan-
guage suitable for expressing information about a domain with an
object-oriented ontology. Figure 4 shows how these models can be
put in the same context as the standard type of ontology that models
an application domain. The figure shows a meta-modelling view of
an agent system. The bottom layer (Level 0) depicts the concrete en-
tities that exist in and around an executing agent. Above this, Level 1
shows the models that define the properties of the Level 0 instances:
there is an “instance of” relationship between each object at Level 0
and some concept defined in Level 1. In particular, a domain object is
an instance of a concept in an ontology, a knowledge object is an in-
stance of (i.e. expression in) a content language and similarly a mes-
sage object is an instance of an ACL model. Finally, Level 2 shows
the meta-model used in this paper to describe the Level 1 models.
This is the UML meta-model (the abstract definition of the modelling
constructs in UML): each concept in a model at Level 1 is an instance
of one of the UML modelling elements such as “Class”.

With this viewpoint, it can be seen that the notion of an ontology is
strongly related to the notions of content and agent communication
language abstract syntaxes—all appearing at the same level of the
meta-modelling hierarchy—so we will use the term ontology to refer
to all three.

2 This extension is shown in the long version of this paper [8].

Message

«type»
Reference

1

sender 1

1

receiver*

Data Values

Other 'message parameter'
composition associations
and specialised message
subclasses have been omitted

InformRef QueryRef Inform Request

1

ref

1

«interface»
Proposition

«interface»
DefiniteDescriptor

1

1

1

1

1

1

«interface»
ActionDescriptor

1

1

Figure 5. The FIPA Messaging ontology (defining a FIPA-like ACL)

4 MODELLING MESSAGES AND CONTENT

Figure 5 shows an object-oriented ontology for agent messages,
based on the FIPA ACL. The tabbed rectangle around the class
Reference indicates that this is defined in another ontology:
Data Values (Figure 3). The notions of definite descriptor, propo-
sition and action descriptor are modelled as ‘tag’ interfaces (i.e. in-
terfaces with no operations). This ontology places no structural re-
quirements on the representations that a content language might use
to express these concepts, it just declares that the concepts exist.

Note that this ontology includes a message class InformRef. This
is not the same as the FIPA ACL inform-ref “macro action”, which
is a technical device that allows an agent to plan an informing action
before it knows the actual reference that corresponds to the object
to be identified (e.g. “the father of John Brown”). When the plan is
executed, the actual message sent will be an inform action contain-
ing a proposition stating that the definite descriptor supplied is equal
to a given object. However, requiring the use of the generic inform

message type for this communication needlessly constrains the form
of content languages that can be used within a FIPA ACL message
(they must include an equality predicate). The messaging ontology
above therefore adds a concrete InformRef message class that sep-
arately identifies the definite descriptor and the reference instead of
requiring the content language to relate these within a proposition.

Figure 6 shows an object-oriented content language that can be
used to directly encode information about objects that are instances
of classes in an object-oriented ontology. Instead of representing in-
formation about objects as a conjunction of facts in a logical sen-
tence, a formula takes the form of an object diagram, i.e. a network
of objects and links. The class OOProposition is a concrete version
of the Formula class that is declared to implement the Proposition
interface (thus allowing objects of this type to appear in messages
encoded according to the FIPA Messaging Ontology shown in Fig-
ure 5). The class OODefDescriptor extends the object diagram by
indicating a particular node in the diagram that denotes the object of
interest in a query. Figure 2 includes an instance of this class.

16.3

«interface»
DefiniteDescriptor

«interface»
Proposition

«interface»
ActionDescriptor

FIPA Messaging

«type»
Reference

Data Values

Formula

ObjectDescriptor

AttributeValue

Link

1

*

1

*

value
1

1

1

*

LinkEnd

1

2..*
*

instance

1

1

classifier 1

1

att_name 1

1

role_name1

1

assoc_name1

OODefDescriptor OOProposition

1

var1

OOActionDesc

1

actor

1

1

act

1

1

argument

*

DataValue

1

*ref

«type»

Figure 6. An ontology for an object-oriented content language

The representation of action descriptors in this ontology is a sim-
plified (for brevity) version of the RDF Schema model behind the
FIPA-RDF content language [9, Annex B].

Note that the class (or, using UML terminology, the “classifier”)
of the object described by an object descriptor is represented by a
reference. We assume that each model element in an ontology has
been assigned a permanent reference, as in RDF schemas [10].

One current limitation of this content language is that the notion
of definite descriptor in this language only allows objects to be the
subject of a query (the object is identified by the var component of
an OODefDescriptor object). In general, when an object-oriented
ontology is used, an agent may wish to ask another agent about the
value of some attribute of an object. Adding this capability to our
content language requires further investigation of the semantics of
definite and indefinite descriptors, references and values, which seem
to be more complex in an object-oriented setting than in the first order
logic setting on which the semantics of FIPA agent communication
is based [6]. In particular, it may be necessary to add a new “query
value” speech act to our communication language.

The content language presented above is designed to encode
propositions as object diagrams where the nodes can be descriptors
for any domain objects that are defined using an object-oriented on-
tology. Nothing can be assumed about the actual ontology of the
objects to be described, and therefore the types of object and the
possible relationships that might need to be encoded. Therefore, the
basic concepts expressed in the content language ontology are ‘ob-
ject descriptor’, ‘attribute value’, ‘link’ and ‘link end’. If this content
is actually describing information about men, women and father-of

relationships, a receiving agent that wishes to use a more direct and
specialised encoding of the information must piece together an inter-
linked structure of man and woman objects by ‘parsing’ the object
descriptor and link objects that comprise the message content. How-
ever, if two agents have established that they share a common on-
tology, their messages to each other could use a specialised content
language that contains direct descriptors of ontology objects and on-
tology relationships (e.g. man descriptors, and father-of links). This
is an important topic for future research.

5 CONCLUSION

This paper has shown how abstract models of agent communication
and content languages are strongly related to the notion of domain
ontologies, and has presented a common framework for these types
of model. A content language was proposed for communicating in-
formation encoded according to an object-oriented ontology, as well
as an ontology for FIPA-style agent messages.

Future work includes incorporating these ideas into the NZDIS
FIPA agent platform [11], clarifying the semantics of references,
refining the object-oriented content language presented, developing
techniques to automatically generate ontology-specific content lan-
guages, and investigating ways of modelling agent actions within
ontologies.

REFERENCES
[1] Foundation for Intelligent Physical Agents Web site. http://www.fipa.

org/, 2000.
[2] S. Cranefield and M. Purvis. UML as an ontology modelling lan-

guage. In Proceedings of the Workshop on Intelligent Information
Integration, 16th International Joint Conference on Artificial Intel-
ligence (IJCAI-99), 1999. http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-23/cranefield-ijcai99-iii.pdf.

[3] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley, 1999.

[4] Object Management Group Technology Adoptions. http://www.omg.
org/techprocess/meetings/schedule/Technology_Adoptions.html, 2000.

[5] S. Cranefield and M. Purvis. Extending agent messaging to enable OO
information exchange. In R. Trappl, editor, Cybernetics and Systems
2000, pages 573–578, Vienna, 2000. Austrian Society for Cybernetic
Studies.

[6] M.D. Sadek. Logical task modelling for man-machine dialogue. In Pro-
ceedings of the Eighth National Conference on Artificial Intelligence
(AAAI-90), pages 970–975. AAAI Press, 1990.

[7] B. Russell. On denoting. In R. C. Marsh, editor, Logic and Knowl-
edge: Essays, 1901-1950. Allen and Unwin, 1956. Also at http://www.
santafe.edu/˜shalizi/Russell/denoting/.

[8] S. Cranefield, M. Purvis, and M. Nowostawski. Is it an ontology or
an abstract syntax? Modelling objects, knowledge and agent messages.
Discussion Paper 2000/08, Department of Information Science, Uni-
versity of Otago, 2000. http://www.otago.ac.nz/informationscience/
publctns/complete/papers/dp2000-08.pdf.gz.

[9] FIPA Draft 18-1999: FIPA content language library. http://www.fipa.
org/spec/fipa99/fipa99Kawasaki.htm, 1999.

[10] Resource description framework (RDF) schema specification 1.0.
http://www.w3.org/TR/2000/CR-rdf-schema-20000327/, 2000.

[11] M. Purvis, S. Cranefield, G. Bush, D. Carter, B. McKinlay,
M. Nowostawski, and R. Ward. The NZDIS project: an agent-based
distributed information systems architecture. In R.H. Sprague Jr., ed-
itor, Proceedings of the Hawaii International Conference on System
Sciences (HICSS-33). IEEE Computer Society Press (CDROM), 2000.
http://nzdis.otago.ac.nz/download/papers/nzdis-project_1-00.pdf.

16.4

