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Abstract
The ease of collection and the increasing availability of large data stores has led to demands for

improved methods for analyzing these data and deriving significant knowledge that may be latent

in these data stores. In particular there is hope that the use of new analytical techniques in

connection with “data trawling”, or data mining operations may reveal hidden relationships that

lie buried within these data sets. This research investigates various techniques for the task of

discovering relevant features and inference rules from data sets. Following the three steps of a

knowledge extraction process, namely pre-processing (feature selection), rule discovery process,

and post-processing (rule refinement), the research attempts to address some current difficulties

in these three steps and introduces and integrates a ‘market trading’ technique with existing

techniques from the field of knowledge discovery and refinement with respect to data mining.

In connection with the pre-processing, a feature selection approach that employs neural networks

is presented, and three associated pruning schemes that make automatic selection of the pruning

threshold are proposed. The proposed neural network techniques are evaluated and compared

with the P2-statistic-based discretization algorithm, called Chi2, by experimenting with six

practical applications. 

The Chi2 algorithm is investigated as a technique for solving problems in intelligent spatial

information systems and fuzzy systems. The case studies show that the Chi2-based spatial data

filtering can successfully reduce the number of spatial data items and the number of features, and

therefore neural network computation can be efficiently performed. A novel approach of

employing the Chi2 algorithm to select membership functions for fuzzy systems is proposed. In

connection with the applications of fuzzy neural networks (FuNN models), three experimental

examinations are demonstrated that an automatic selection of the number and widths of the

membership functions by the Chi2-based membership function selection method can lead to the

improvement of the generalization ability of FuNN fuzzy neural networks.

In connection with the rule discovery and refinement process, a novel market-based rule learning

(MBRL) system is developed and its capability of evolving and refining rules is investigated. As

a classifier system-inspired model, it introduces a novel element by importing existing rule sets
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generated by other rule extraction techniques into the system. This basic change not only makes

the MBRL system begin with pre-established rule sets with a relatively limited complexity, rather

than a random set, but also enhances the likelihood of being able to interpret the evolved rules.

Moreover, the MBRL system produces various modifications in each of the layers of the

structure. With the modifications introduced by the MBRL system, the problems existing in

current classifier systems can be solved or lessened.

In this research, the MBRL system is proposed as a post-processing tool to be used with fuzzy

neural networks (FuNN models) and the fuzzy neural network rule extraction technique,

ReFuNN, in order to provide a general framework for fuzzy inference-based rule discovery.

Similarly, as a post-processing tool, the MBRL system is also proposed to be used with feed-

forward neural networks, and the feed-forward neural network rule extraction technique,

NeuroLinear, in order to improve the quality of extracted rules from feed-forward neural

networks. The experimental results show that the MBRL system is a potentially useful additional

tool that can be used  to refine (fuzzy) neural network extracted rules and possibly discover and

add some new, better performance rules. As a result, it can lead to improved performance by

increasing the accuracy of the rule inference performance and/or improving the comprehensibility

of the rules.

By illustrating how the MBRL system succeeded in finding solutions for six learning examples

from scratch, the MBRL system is shown to have potential as an alternative generic learning

technique that can be used to complement, or be used as an alternative to, conventional

connectionist models to accomplish complex computational tasks. 
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Part I
Introduction and Background

Part I describes the context of this research by presenting the research introduction and

background, and comprises Chapters 1– 3.
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 Chapter 1 Introduction 

As computer power grows and data collection technologies advance, a plethora of data is

generated in almost every field where computers are used. Human beings rely more and more on

computers to accumulate, process, and make use of data. Without the aid of improved computing

technologies, there is no doubt that huge amounts of data collected would never be examined.

The ease of collection and the increasing availability of data stores has led to demands for new

methods for analyzing these data and deriving significant knowledge that may be latent in these

data stores. In particular there is hope that the use of new analytical techniques in connection with

data-mining operations may reveal hidden relationships that lie buried within these data sets. In

order to make raw data useful, it is necessary to represent, process, and extract knowledge for

various applications. This research investigates adaptive knowledge discovery techniques for the

task of data mining applications so that relevant features can be identified, and inference rules

can be extracted and refined from the problem domains. In this chapter, Sections 1.1 and 1.2

provide the research motivation and the goal of the research. Section 1.3 describes  sets of criteria

to evaluate the feature selection, rule extraction, and rule refinement techniques used in the thesis,

and Section 1.4 presents the outline of the thesis.

1.1 Motivation
The increasing interest in data mining, or the use of historical data to discover regularities and

improve future decisions, follows from the confluence of several recent trends: the falling cost

of data-storage devices and the increasing ease of collecting data over networks; the development

of robust and efficient learning algorithms to process these data; and the falling cost of

computational power, enabling the use of computationally intensive methods for data analysis.

The field of data mining and knowledge discovery has already produced practical applications

such as analyzing medical outcomes, detecting credit card fraud, predicting customer purchase

behaviour, predicting the personal interests of Web users, and optimizing manufacturing

processes (Mitchell 1999). It has also led to a set of scientific questions about how computers

might automatically and effectively learn from past experience (Langley 1998).
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Pre-processing Discovery 
Process

Post-processing

Data Selected Data

Rules Interesting Rules

Figure 1.1. A general model of knowledge discovery

The general model of knowledge discovery used in this research is shown in Figure 1.1. It

consists of three basic steps: 

1) Pre-processing – data are selected and prepared for the next step. 

2) Discovery process – a discovery algorithm is chosen and rules are learned; here rules are

typically represented in an IF-THEN format: IF the data that is given to the rule meets some

specified condition, THEN an action of a particular type is taken. 

3) Post-processing –  rules are sifted or grouped for their better use and understanding, since

often the number of rules is large and some rules are more “interesting” than others (Liu &

Motoda 1998). 

Many research problems still remain in these three steps. They are listed as follows:

Problems in Pre-processing

Feature selection is one of the long-existing methods for data pre-processing. Its objective is to

select a minimal subset of features according to some reasonable criteria (Liu & Motoda 1998),

such as whether selected features are adequate for predictive accuracy of a learning task or

whether selected features help simplify the learned results so that they are more understandable.

By choosing the minimal subset of features, irrelevant and redundant features can be removed

according to certain criteria. Although feature selection has been the focus of interest for quite

some time, solving real-world problems, such as analyzing spatial data sets is still a challenge

(Purvis et al. 2001). For the large size of spatial information data sets, it may be advantageous

to perform data filtering by means of feature selection to reduce the size of the data set without
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sacrificing the discriminating power of the original data prior to carrying out further

computational analysis. 

For the problems existing in other techniques, such as the difficulty of selecting appropriate

membership functions in a fuzzy system (Klir & Yuan 1995), feature selection techniques such

as Chi2 algorithm (Liu & Setiono 1995a) may offer solutions.

Moreover, the most widely-used type of non-symbolic computational module, artificial neural

networks, has been extensively used for data pattern recognition (Schoenenburg 1990; Migrin

1993; Shustorovich & Thrasher 1996). However, artificial neural networks can be further

enhanced to reduce the number of irrelevant and redundant features by adapting network

architectures so that a minimal neural network structure with fewer nodes and connection weights

can be obtained. The main technique used here is neural network pruning.  

Problems in the Discovery Process

Many approaches such as decision trees (Quinlan 1986) and the rule generator X2R (Liu & Tan

1995) exist for rule extraction from raw data, but they are noise-intolerant and, more importantly,

cannot be applied to incomplete or corrupted data. Therefore, improved data analytical techniques

are in demand. 

In recent years there has been interest in this respect in the application of artificial intelligence

techniques, such as expert systems, fuzzy systems and artificial neural networks (Purvis et al.

1996). Each of these approaches has specific advantages when used for data analysis. For

example, rule-based expert systems facilitate the input and refinement of expert knowledge in

problem-solving modules. They also enable straightforward tracing of the reasoning process by

which a particular outcome is achieved. Fuzzy systems extend the notion of ordinary rule-based

expert systems to allow for the treatment of vague and uncertain knowledge in a systematic

fashion. These systems can be efficiently implemented and can incorporate human-like reasoning

about qualitative information. Neural networks, in contrast with the above, need not be initially

supplied with expert knowledge and can be applied to virtually any data set without

presuppositions concerning the distribution of the training data (Zhuang  & Engel 1990). They

can be applied to incomplete or corrupted data and still yield acceptable results. Moreover, it has
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been shown that a three-layer feed-forward neural network with a sufficient number of hidden

nodes can approximate any continuous function to any desired accuracy (Cybenko 1989). In

many cases, neural networks are the preferred learning method simply because they have a better

generalization ability than those of competing algorithms. Several empirical studies have pointed

out that there are some problem domains in which neural networks provide predictive accuracy

that is superior to commonly used symbolic learning algorithms (Atlas et al. 1989; Fisher &

Mckusick 1989; Weiss & Kapouleas 1989; Shavlik et al. 1991) and statistical techniques (Zhuang

& Engel 1990). On the other hand, the reasoning associated with neural networks is essentially

a “black box” whose operation is not evident to the user. For example, it is usually not possible

to explain why a certain pattern has been classified in a particular fashion by the network. It

would be advantageous if explicit rules comprehensible to humans could be extracted to describe

the classification behaviour of the network, and efforts have been made to find effective

algorithms to extract such rules from trained feed-forward neural networks (Towell & Shavlik

1993; Fu 1994; Setiono & Liu 1997b). In particular, Setiono and Liu have presented a promising

approach, “NeuroLinear”, which extracts linear rules for problem domains with continuous and

discrete input attributes. Apart from rule extraction, there are a number of other techniques

(Wikel et al. 1996; Poel 1998; Primeaux 2001) for extracting information from trained neural

networks in order to overcome the black box behaviour of neural networks. However, these

techniques are outside the scope of this research, and hence will not be discussed in this thesis.

Fuzzy neural networks (Lee & Lee 1974),  which combine neural networks and fuzzy logic, have

also attracted attention. Several techniques (Horikawa et al. 1992; Kasabov 1993a) have been

presented to extract fuzzy rules from fuzzy neural networks.

With the various known rule extraction techniques in hand, it is important to evaluate the relative

strengths and weaknesses of these techniques in the context of different data sets, so that an

understanding of how these techniques can best be used is gained.

In the past years, there has been interest in studying complex interactive systems by simulating

the economic behaviour of markets (Clearwater 1996). The ability of markets to facilitate

resource allocation with very little information  makes them an attractive solution for many

complex problems. A market-based system offers many features that rule extraction and

refinement systems could utilize (Zhou & Purvis 1999). For example, a fascinating aspect of a
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market is that through the simple interactions of trading (buying and selling) among individual

agents, a global optimization can be achieved, such as achieving stable prices or a fair allocation

of resources. The goal of a rule discovery system is to discover a set of rules that, when applied

to the input data, leads to satisfactory behaviour of the system. By adopting the concept of

economic trading behaviour among individual commercial agents, the rule discovery system can

be thought as an artificial market where individual rule agents are interacting and competing in

order to achieve some overall global behaviour. 

Holland was the first author to use economic terminology and insight in a multi-agent learning

system. His classifier system work (Holland 1986) attracted considerable interest for a number

of years. Holland’s classic classifier system is an on-line learning system that seeks to gain

reinforcement from its environment based on an evolving set of simple string-encoded rules

called classifiers. It distributes credit to a large number of sequentially acting classifiers by means

of strictly local transactions among them. Via the credit assignment process, classifiers useful in

gaining reinforcement are selected and propagated over others less useful, leading to improved

system performance. While its initial appearance was promising, the evolution of the classifier

system idea has not been rapid. Only a limited number of successful applications (Booker 1982;

Goldberg 1983; Wilson 1985; Dorigo & Sirtori 1991; Roberts 1993) were subsequently reported.

A classifier system has major drawbacks: it is difficult to interpret (Wilson 2000), hard to

generate initial rule chains (Wilson & Goldberg 1989), and it is difficult to set initial system

parameters (Richards 1995). As the result of these weaknesses, according to Wilson (1999), a

classifier system is rarely the technique of choice in practical applications. 

The market-based rule learning (MBRL) system proposed in this thesis is an adaptive rule-

learning system inspired by a classifier system. Although it takes the main structure of a classifier

system, it introduces the fundamental change by importing existing rule sets generated by other

rule extraction techniques into the system. Moreover, it presents modifications in each of the

layers of the structure. With the change and modifications introduced by the MBRL system, the

problems existing in previous classifier systems can be solved or lessened. This will be discussed

in detail in Chapter 6. 
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Problems in Post-processing

Simplicity and accuracy are two desirable features of the derived rule set (Craven 1996). It is

important to have an additional post-processing tool in hand to refine extracted rules so that they

are easier to comprehend and more effective. Many traditional rule-refinement systems follow

the strategy of selecting a single rule to refine at each step of the process. This rule-by-rule

procedure can be a bottleneck in the refinement process. Market-based techniques therefore can

provide benefits to the post-processing stage (as well as to the discovery process as outlined

above). They can avoid this bottleneck and may therefore offer advantages for efficiently

discovering a simpler set of refined rules that still perform effectively. 

In this thesis we apply the proposed market-based rule learning (MBRL) system to post-

processing the output of (fuzzy) neural network rule extraction algorithms to generate human-

understandable rules with high accuracy and/or small rule size.

1.2 Research Goals 
The goal of this research is to investigate and develop new adaptive techniques for the task of

discovering relevant features and inference rules from data. Using the three steps of the

knowledge discovery process as a basis, the research focuses on tackling the research problems

discussed in the previous section as follows:

Pre-processing (feature selection)

• With the existing difficulty of selecting appropriate membership functions in fuzzy systems,

a novel approach of employing a P2 statistic-based feature selection method, called the Chi2

algorithm (Liu & Setiono 1995a), to make automatic selection of the number and widths of

the membership functions is proposed.

• In response to the challenge of applying feature selection for solving real-world problems

involving large data sets, a Chi2-based spatial data filtering is proposed to reduce the number

of spatial data items and the number of features. The resulting data set can then be more

efficiently used in connection with neural network computation.
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• With the aim of implementing feature selection via neural networks, three different pruning

mechanisms are proposed and compared. These three neural network pruning mechanisms are

evaluated by experimental comparisons to the Chi2 algorithm. 

Discovery Process

• For the purpose of integrating a ‘market trading’ technique to the field of rule discovery and

refinement with respect to data mining, market-based rule learning (MBRL) system inspired

by classifier system is proposed. The proposed system is investigated by applying it to

learning tasks when no prior knowledge is given.

• Four existing rule extraction approaches, including an established method based on C4.5

decision trees (Quinlan 1986), the rule generator X2R (Liu & Tan 1995), a fuzzy neural

network rule extraction technique ReFuNN (Kasabov 1993a), and a feed-forward neural

network rule extraction technique NeuroLinear (Setiono & Liu 1997b), are evaluated

empirically in the context of problem domains that involve supervised classification learning.

Post-processing

• The market-based rule learning (MBRL) system is proposed in combination with the fuzzy

neural network rule extraction algorithm, ReFuNN, to provide a general framework for fuzzy

inference-based rule discovery. 

• The MBRL system is proposed in combination with the feed-forward neural network rule

extraction algorithm, NeuroLinear, to provide a framework for improving the quality of rules

extracted from feed-forward neural networks. 

• The use of the MBRL system as a post-processing tool is evaluated by conducting

experiments on problem domains that involve supervised classification learning.

This thesis does not make the claim that the general framework comprising a market-based

evolution system with (fuzzy) neural network rule extraction algorithms are ideal for all learning

tasks. The aim is to provide an alternative approach to other approaches, that might be useful in

solving some tasks when there is difficulty dealing with them using more conventional

techniques. 
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In the thesis, a set of six selected data sets was used to conduct the experiments and evaluate the

relevant techniques. 

1.3 Evaluation Criteria
As described earlier, the goal of this research aims to investigate adaptive discovery techniques

for data mining so that relevant features can be identified, and inference rules can be extracted

and refined from the problem domains. Following the conventional three steps of the knowledge

discovery process described earlier, feature selection techniques, rule extraction techniques and

rule refinement techniques are investigated. In order to evaluate these techniques, we first

identify a set of appropriate evaluation criteria.

1.3.1 Evaluation Criteria for Feature Selection Techniques 

Three assessment measures are commonly used (Liu & Motoda 1998) to evaluate feature

selection techniques. They are listed below.

# Predictive accuracy. Can the feature selection methods help to improve the predictive accuracy

of a learning task? Predictive accuracy is a commonly used measure to assess whether the

selected features can improve or maintain the system’s performance on unseen data. For the

problem domains that involve supervised classification learning, the predictive accuracy of the

system is defined based on the classification performance, i.e. the percentage of the correct

classified examples out of the total number of testing examples, as follows:

                                                   Number of correct examples                                            Predictive Accuracy = _________________________
                                                 Total number of testing examples       

# Comprehensibility. Can the feature selection methods help to reduce the complexity of

representations? It is generally agreed that it is difficult for humans to find regularities and

understand underlying relationships in data sets. There are various representations for expressing

induced knowledge from learning algorithms. For example, there are learning algorithms that

represent their learned knowledge as decision trees (Quinlan 1993), and neural networks

(Rumelhart et al. 1986), Although it can be a subjective matter as to which representation is more

understandable than another, it is reasonable to seek the simplest possible for a given
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representation, where ‘simpler’ might mean a smaller number of structural elements or

associations among the elements. In general one might expect that  the simpler a representation,

the easier it will be to comprehend. For example, other things being equal, we would prefer a

smaller size of neural network than a larger one.  

# Data simplicity. Can the feature selection methods remove noisy, irrelevant, and redundant

features? The number of features selected is a measure for assessing the size of data: the smaller,

the better, because a smaller number of features, implying less complexity of a data set, means

fewer potential hypotheses, faster learning, and simpler results.

A feature selection method can be evaluated along these three dimensions. If a method can

achieve the best scores in all three, it is judged to be the best method overall. Otherwise, one can

compare along each dimension and check which method gets better scores in more dimensions.

With these three dimensions in mind, two other important practical factors should also be

considered:

# Speed of feature selection methods. How quickly can feature selection methods obtain results?

This is particularly important when we deal with large data sets.

# Generality of selected features. The generality of selected features is not always the most

important. However, in order to reduce the data collection effort, we want to know whether the

same set of relevant features are selected by different techniques. For example, we can inspect

whether the selected features from the neural network feature selection approaches overlap those

selected by the Chi2 algorithm on the same application.

The feature selection techniques used in the thesis will be evaluated with respect to the above five

criteria in Chapter 4.

1.3.2 Evaluation Criteria for Rule Extraction and Refinement Techniques 

Four commonly used measurements to evaluate rule extraction and refinement techniques are as

follows:
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# Predictive accuracy. Typically the most important consideration in rule inductive learning is

to induce a rule set that has a high level of predictive accuracy (Craven 1996). So whether the

extracted or refined rule sets from the relevant techniques can make accurate predictions on

previously unseen cases should be measured. 

# Comprehensibility. Often the comprehensibility of learned rule sets is an important

consideration. That is, does the technique extract (or refine) rule sets in such a way that they may

be inspected and understood by experts in the domain? Measuring the comprehensibility of

learned rule sets is a problematic issue. An underlying premise of the experiments conducted in

this thesis is that syntactic complexity is a good indicator of comprehensibility. For a given

representation language, other things being equal, simpler descriptions are better than complex

descriptions. The psychological literature supports the notion that humans prefer simple concepts

(Neisser & Weene 1962; Pinker 1979; Medin et al. 1987). The specific measures of syntactic

complexity that are used to assess the comprehensibility of rule sets in this thesis are: (1) the

number of rules in the rule set, and (2) the average number of antecedents per rule in the rule set.

# Fidelity. Fidelity is a quality attribute associated with rules that have been generated from a

learning model. Rule fidelity is a measure of the agreement between the classification of the test

set (unseen cases) by the learning model and by the rule set extracted from the learning model

(Andrews et al 1995). A rule set is considered to display a high level of fidelity if it can mimic

the behaviour of the learning model, such as an artificial neural network, from which it was

extracted by capturing a large proportion of the information embodied in the model. For example,

consider a neural network (feed-forward neural network or fuzzy neural network) as a learning

model, fidelity is measured by the difference in accuracy on test samples between the neural

network extracted rules (NeuroLinear-generated rules or ReFuNN-generated rules) and neural

network outputs.

# Consistency. Consistency measurement is another quality attribute associated with rules that

have been generated from a learning model.  Under Towell and Shavlik’s criteria (1993), an

extracted rule set is deemed to be consistent if, under differing training sessions, a learning model

generates rule sets which produce the same classification of unseen examples. 
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In addition to predictive accuracy, comprehensibility, fidelity and consistency, there is another

criterion that is often an important consideration when evaluating rule extraction techniques:

# Scalability. Scalability is the ability of a rule extraction technique to be applicable to data sets

with increasingly larger numbers of  features and larger numbers of samples. The scalability of

a neural network rule extraction algorithm defined by Craven and Shavlik (1999) is as follows:

Scalability refers to how the running time of a rule extraction algorithm and the

comprehensibility of its extracted rule sets vary as a function of such factors as network, feature-

set and training-set size.

   

Scalability is a quality measurement for discovery process tools (rule extraction techniques). The

scalability of post-processing tools (rule refinement techniques) does not play a crucial role for

knowledge discovery and data mining applications. It is expected that a rule refinement technique

only deal with existing rule sets extracted from other learning techniques and not with the

original data set, and thus the rule refinement technique does not raise particular concerns about

scalability.  

The proposed MBRL system and four existing rule extraction techniques will be empirically

evaluated against the criteria of predictive accuracy, comprehensibility, fidelity and consistency.

The scalability criterion will be further discussed in Chapter 8. 

         

1.4 Outline of Thesis           

This thesis consists of four parts, each of which is made up of one to four chapters, a total of ten

chapters. Each part revolves around a theme. Part I presents the research introduction and

background. Part II is devoted to feature selection (pre-processing) issues. The issues concerning

both rule extraction and rule refinement (discovery process and post-processing) are together

described in Part III. The motivation for grouping rule extraction issues with rule refinement

issues in one part is simply because the proposed MBRL system can be applied both in the rule

extraction (discovery) step and the rule refinement (post-processing) step, and the existing rule

extraction techniques are used to conduct the experiments for the purposes of experimental

comparisons to the MBRL system. Part IV concludes the thesis.  
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The remainder of this thesis is organized as follows:

Part I provides context for understanding the contributions of the work presented in subsequent

chapters. Chapter 2 provides background material for the rest of the thesis. It describes the

statistical methods used in the experiments of this thesis, gives a brief introduction to neural

networks, fuzzy systems and fuzzy neural networks, provides a review of related work in feature

selection and rule extraction, and describes the field of classifier systems including genetic

algorithms in detail. One existing statistic-based feature selection method, called the Chi2

algorithm, and four existing rule extraction methods: C4.5 decision trees, the rule generator X2R,

the feed-forward neural network rule extraction approach NeuroLinear, and the fuzzy neural

network rule extraction approach ReFuNN, are discussed and illustrated. Chapter 3 provides a

description of the problem domains used in the experiments of the thesis.

Part II is devoted to feature selection (pre-processing) issues, concerning both statistical and

connectionist methods. Chapters 4 and 5 belong to this part. In Chapter 4, how to achieve feature

selection via neural networks is discussed. Three neural network pruning schemes are then

proposed. A detailed analysis and comparison of experimental results using six data sets is

presented. Chapter 5 proposes a Chi2-based spatial data filtering technique and a Chi2-based

membership function selection method for fuzzy systems. Both of these methods demonstrate

how techniques from separate approaches can be combined to yield better results.

Part III is about issues concerning rule extraction and refinement (in the discovery process and

post-processing steps), and comprises Chapters 6 – 8. In Chapter 6, the architecture and

computational processes of the proposed market-based rule learning (MBRL) system are

described in detail, with emphasis on differences between the proposed system and the classic

classifier system. The steady-state behaviour of the proposed system is analyzed mathematically

and its time-complexity is evaluated. Chapter 7 focuses on how the proposed market-based rule

learning (MBRL) system can be used as a rule-refinement tool to improve the quality of extracted

rules from fuzzy neural networks and feed-forward neural networks. A description is given of

how to encode and feed the input information and initial rule set to the system, how learning is

carried out, and how the search is performed by the genetic algorithm. Chapter 8 first presents

experiments with rule evolution and refinement using the MBRL system with six selected data
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sets. For comparison and evaluation purposes, experiments on postprocessing the output of four

existing rule-extraction techniques, including C4.5 decision trees, the rule generator X2R, the

NeuroLinear approach, and the ReFuNN approach, are also described. In this chapter, an

empirical evaluation of the proposed MBRL system and the selected existing rule-extraction

techniques is also presented. The strengths and weaknesses of different rule generation and

refinement methods are examined. The results provide evidence that can be used for better

informed selection and usage of available rule extraction and refinement methods. 

    

Part IV contains only Chapter 9, which summarizes the contributions of this thesis, limitations

of the work presented, and proposes for future work.

The attached CD contains 10 appendices, which present the representative rules extracted or

refined by different rule extraction and refinement techniques for each problem domain, and the

parameters used in the experiments.  
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Chapter 2 Background

2.1 Introduction
This chapter provides background material for the remainder of the thesis. Section 2.2 describes

the statistical methods used in the experiments. Section 2.3 provides a description of feed-

forward neural networks, fuzzy systems, and fuzzy neural networks employed in the algorithms

of the thesis. Section 2.4 gives an overview of feature selection methods, and, in particularly,

describes a P2 statistic-based feature selection algorithm, called the Chi2 algorithm (Liu &

Setiono 1995a). This material is presented as the empirical evaluation of three pruning schemes

associated with feature selection via neural networks presented in Chapter 4 involves

experimental comparisons to the Chi2 algorithm. Moreover, the spatial data filtering and the

membership function selection method proposed in Chapter 5 are based on the Chi2 algorithm.

Section 2.5 surveys other work that has been done in the area of rule extraction, in particular, four

existing rule extraction methods that are described and illustrated in detail.  Section 2.6 gives

detailed descriptions and discussions of classifier systems including genetic algorithms. This

discussion provides the background appropriate for understanding the novel aspects of the

market-based rule learning (MBRL) system presented in Chapter 6.

   

2.2 Statistical Methodology
In this thesis, statistical methods are used in the experimental evaluation of proposed techniques

and various existing techniques in Chapters 4, 5, 7 and 8. This section briefly discusses two types

of statistical methods that are important in later chapters: estimation and hypothesis testing.

2.2.1 Estimation

The task in an estimation problem is to determine the value of some parameters of interest. The

experiments in this thesis, in particular, are concerned with estimating the predictive accuracy

of various feature selection, rule extraction and rule refinement techniques, and with estimating

the  complexity of learning models and inference rules extracted from the models. 

The basic method for estimating the predictive accuracy of a learning algorithm is to measure its

accuracy on a set of examples that were not used during the learning process. Such a set is called



15

a test set. Unless the size of the available data set is quite large, a preferred method for accuracy

estimation is to use cross validation (Stone 1974). In k-fold cross validation, the available data

is partitioned into k separate sets of approximately equal size. The cross-validation procedure

involves k iterations in which the learning method is given k-1 of the subsets to use as training

data, and is tested on the set left out. Each iteration leaves out a different subset so that each is

used as the test set exactly once. The cross-validation accuracy of the given method is simply

the average of the accuracy measurements from the individual folds. In the experiments in the

thesis, predictive accuracy, comprehensibility, and fidelity will be measured using 10-fold cross-

validation.    

2.2.2 Hypothesis Testing

Hypothesis testing involves evaluating an assertion about the distribution of a random variable.

Such an assertion is termed a statistical hypothesis. Hypothesis testing is used in this thesis when

evaluating the performance of various experimental techniques. 

One type of hypothesis test that is commonly used when evaluating inductive learning techniques

is whether two or more techniques have significantly different performances. For example, in

Chapters 7 and 8, we will test the hypothesis that the inference rules produced by one technique

in some domain are more accurate than those produced by another technique. A statistical test

called paired-sample t-test (Sachs 1984) is used to compare the accuracy of one technique to

another when the cross validation procedure is employed. In the paired-sample t-test, we first

calculate the average of the differences in accuracy measurements diff for techniques A and B for

k folds:

                                                                      (2.1)diff
k

accuracy accuracyA
i

B
i

i

k

= −
=
∑1

1
( )

We also calculate the standard deviation, s, of this value. Here, accuracyi
A is the measured

accuracy for technique A on the i-th fold, and accuracyi
B is the accuracy of technique B on the

same fold. In order for this test to be valid, the two techniques must have used the same partition

for cross validation. The test statistic is then:
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                                                                                                                               (2.2)t
diff

s k
=

/

The null hypothesis (that the two algorithms have the same level of accuracy) is rejected with

100(1- a )% confidence if:

                                                                                                                          (2.3)t ta k≥ −/ ,2 1

where a is a predefined significance level, ta/2, k-1 defines the rejection region for the test, and it

is calculated by using a t distribution with k-1 degrees of freedom. For example, if using a = 0.05

and k =10, then t0.025, 9 = 2.262. Note that this is a two-tailed test, meaning that the null hypothesis

can be rejected either if technique A is more accurate than technique B, or vice versa. It is proper

to use a two-tailed test in this situation since we have no a priori reason to believe that one

technique is less accurate than the other.

A statistical term, p-value (Dowdy & Wearden 1991), is often used in hypothesis tests, where one

either rejects or fails to reject a null hypothesis. The p-value represents the probability of

rejecting the null hypothesis when it is true. The smaller the p-value, the smaller is the probability

that you would be making a mistake by rejecting the null hypothesis. Therefore, instead of

deciding the rejection level beforehand and then conducting a t-test as outlined above, we can just

compute and report the value of the test statistic and its associated p-value. Then, the reported

result will be left to the reader to judge how significant it is. By convention, the most commonly

used level of significance is 0.05 (Dowdy & Wearden 1991), that is, one can reject the null

hypothesis when the p-value is less than 0.05. With respect to calculating the p-value, the reader

should refer to (Mendenhall & Sincich 1995).

2.3 Neural Networks and Fuzzy Systems
The model era of neural networks began with the pioneering work of McCulloch and Pitts (1943).

Since then, many other significant contributions (Hebb 1949; Rosenblatt 1958; Minsky & Papert

1969; von der Malsburg 1973; Grossberg 1976; Kohonen 1982; Hopfield 1982; Rumelhart et al.

1986) have been made in the field. One of the most important development in the field of neural

networks was the development of a algorithm called  backpropagation algorithm (Rumelhart et
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al. 1986) to train multilayered networks. Details of the backpropagation algorithm will be

presented later in the section.

Neural network models are inspired by natural physiology and are an attempt to mimic the

neurons and synaptic connections of the brain (Hertz et al. 1991). Biological neurons transmit

electrochemical signals through neural pathways. Each neuron receives signals from other

neurons through special junctions called synapses. Some inputs tend to excite the neurons, others

inhibit them. When the cumulative effect exceeds a threshold, the neuron fires and sends a signal

to other neurons. The notion of an artificial neuron, created by the artificial intelligence (AI)

researchers and simulated on a computer, models these simple biological characteristics. Each

artificial neuron is connected to a set of inputs; each input value is multiplied by a weight

analogous to a synaptic strength, and the combination of these weighted values is what is acted

upon by the artificial neuron.  

There is a wide variety of neural network architectures and learning methods for both supervised

and unsupervised inductive learning tasks (described below). The work in this thesis focuses on

feed-forward neural networks and fuzzy neural networks applied to classification tasks, and

therefore the discussion below is restricted to these two particular types of neural network

architectures and supervised learning methods. 

In order to fully understand fuzzy neural networks, a basic introduction to fuzzy sets, fuzzy logics

and fuzzy systems are given. The current difficulty of constructing membership functions in

fuzzy systems is also addressed.

 

2.3.1 Feed-forward Neural Networks

Figure 2.1 shows the architecture of a typical feed-forward neural network model. It has three

layers: a layer of input nodes, an intermediate layer of nodes, and a layer of output nodes.

Connections are from each input node to each intermediate layer node, and from each

intermediate layer node to each output node in a feed-forward manner.
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Figure 2.1. A feed-forward neural network

X1

X2

W1

W2 X

Figure 2.2.  Nodes in a network

 

        

                            

These nodes of different layers are analogous to biological neurons and are the processing units

of the network. A node has an activation value, which is determined by a nonlinear activation

function of the sum of its inputs, which are the weighted values of the outputs from other nodes

that feed into it. Each internode connection has a weight (positive or negative), which is

multiplied by the source node output to produce an input for the destination node. This is shown

in Figure 2.2, where the two nodes on the left feed into the righthand node.

                                        

If the output value of each node is X1, X2  and X, and the values of the weights are W1 and W2, then

X is given by      
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          Figure 2.3. The logistic function

     X f X Wi
i

i= +
=
∑( )

1

2

θ (2.4)

where f is the activation function, and 2 is the bias for the rightmost node. The bias of a node,

which is an adjustable parameter, can be thought of as the node’s predisposition to have a high

(or low) activation before it receives any activation signals from other nodes. Usually a nonlinear

function f is characterised so that if Xi is high, and Wi  is positive, a weighted value of Xi will tend

to increase X, whereas if Wi is negative it will tend to decrease X. In this way positive weights

are analogous to excitatory synapses, and negative weights are analogous to inhibitory synapses

of biological neurons. One commonly used activation function (sometimes called a transfer

function) is the logistic function:

 f x
e cx( ) =

+ −

1
1

(2.5)

where x denotes the input to a node, and c is a constant. As shown in Figure 2.3, this function

“squashes” the node’s net input to an activation value in the range [0,1]. The value of c

determines how steep the curve is.

     

 

Another commonly used activation function is the hyperbolic tangent function:
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        Figure 2.4. The hyperbolic tangent function

 f x
e e
e e

x x

x x( )
( )
( )

=
−
+

−

− (2.6)

The main difference between the hyperbolic tangent function and the logistic function is with

respect to their ranges. The hyperbolic tangent function has a maximum value of 1.0 and a

minimum value of -1.0 as shown in Figure 2.4. 

       

 

Both the logistic function and the hyperbolic tangent function are sigmoidal functions.

As illustrated in Figure 2.1, a feed-forward neural network is composed of several layers of

simple processing nodes. The state of a node at any given time is represented by  its activation

value, which is a real-valued number, typically in the range [0,1] or in the range [-1,1]. The input

layer of a neural network contains nodes whose activations represent values for the features of

the problem domain in which the network is being applied. Typically, a real-valued feature is

represented by a single input node, and a discrete feature with n possible values is represented

by n input nodes. The nodes in the output layer of a network represent the decisions made by the

network. The role of the hidden nodes is to transform the input space into another space in which

it is more profitable for the output units to make linear discriminations.

A feed-forward neural network works in the following way. The input values are presented to the

input nodes, which feed into and activate the hidden layer(s). The values produced by the
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activation functions at the hidden nodes, in turn, feed forward into the output nodes, and then

determine values of the output nodes. 

The learning of neural networks described here is called supervised learning, where the model’s

outputs are compared directly with a set of known, correct values. In other words, an example

is presented to the input nodes, and the outputs are produced from the current parameters. The

outputs are then compared with a set of known, correct target  values of a given example and an

error function is computed. The weights and biases associated with the internode connections are

then systematically adjusted so as to minimise the error function. Then the next “correct” training

example is presented to the network, and the error minimisation calculation is repeated. After

many passes through the whole training example set, the error usually converges to some value

and, provided that this error value is below some predefined threshold, the network can be said

to have learned a set of relationships.

The most widely used neural network learning method is the backpropagation algorithm

(Rumelhart et al. 1986). Learning in a neural network involves modifying the weights and biases

of the network in order to minimize an error function, which is a measure of how close the

network’s predictions are to the class labels for the examples in the training set. The error

function is normally defined as the sum of the squared errors: 

         E A Tj j
ji

= −
⎡

⎣
⎢

⎤

⎦
⎥∑∑1

2
2( ) (2.7)

Here i ranges over the examples in the training set, j ranges over the output nodes of the network,

Tj is the target value for the  j-th output node for a given example, and Aj is the activation of the

jth output unit in response to the example. 

For the feed-forward neural networks used in the thesis, the activation function implemented by

the network for all the nodes is continuous and differentiable. Therefore, the error function can

be minimized by calculating its partial derivatives with respect to each of the network’s

parameters, and making changes to the parameters as follows:

 Δ
r

rw Ew∝ − ∇η( ) (2.8)
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where represents the vector of weights and bias in the network, 0 is the learning rate that
rw

basically represents the search step size, and L E is the gradient of the error function E withrw

respect to the vector of weights and bias in the network. Each parameter is updated according to

the following rule:

w w wnew old= + Δ
r

(2.9)

The updated parameters define a new estimate of the outputs for which E should be reduced. The

gradient is recalculated at this new point, and the parameters are updated again. The process is

repeated until it is considered to have converged to a satisfactory point, which is either when E

cannot be made any smaller, or when the outputs are stabilized and sufficiently close to the

targets. 

Various optimization algorithms can also be used to minimize the error function. Quasi-Newton

algorithms (Haykin 1999), such as the BFGS method, treat the supervised training of a neural

network as a problem in numerical optimization. At each iteration of the algorithm, a positive

definite matrix that is an approximation of the inverse of the Hessian of the function to be

minimized is computed. The positive definiteness of this matrix ensures that a descent direction

can be generated. Given a descent direction, a step size is computed via an inexact line search

algorithm. It has been shown that Quasi-Newton algorithms, such as the BFGS method can speed

up the training process significantly (Watrous 1987). They do however require more storage for

the matrix, which may be a disadvantage in a parallel implementation. Details of the BFGS

algorithm can be found in Dennis & Schnabel (1983). Standard gradient descent augmented with

a momentum term is sometimes used to minimize the error function, as is the Conjugate-Gradient

method. Rinnooy Kan and Timmer (1989) have found that for a moderate number of weights,

various Quasi-Newton algorithms are more efficient; for a large number of weights, various

Conjugate-Gradient algorithms are more efficient.

Often, network training is stopped before a local minimum in the error function is reached. The

motivation underlying these techniques of early stopping is that over-fitting may occur if the

network is trained to the training data too closely. Over-fitting is a phenomenon which indicates

that the neural network has too closely approximated (learned) the training data, which may
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contain noise. In such a case the network can not generalize well on new examples. One method

for estimating a good stopping point is to use a validation set of data that is distinct from the

training set data to monitor the predictive accuracy of the network as it is being trained. Instead

of stopping training based on the error-function minimum for the training data, this procedure

saves the weights from the iteration of the optimization method that results in the lowest value

of the error function for the validation set data. All the neural-network related experiments

described in this thesis use this method of employing separate training and validation data sets.

The ability of feed-forward neural networks to represent complicated and highly nonlinear

relationships, as well as to generalize the recognition behaviour to new situations has attracted

considerable interest. Although many real-world applications of this technique attest to its

viability, it also has some disadvantages, such as the fact that neural network knowledge is coded

as a large number of numerical weights, and their semantics (in terms of the problem to be

solved) are not explicit. Two issues are important for getting past these disadvantages: how to

represent and how to extract neural network knowledge contained in the trained set of weights.

      

2.3.2 Fuzzy Systems 

The notion of fuzzy sets, fuzzy logic and fuzzy inference systems were introduced by Zadeh

(1965, 1971, 1973, 1974). Zadeh (1972) also proposed the initial idea of applying fuzzy sets to

control problems. However, the actual research on fuzzy controllers was initiated by Mamdani

(1976). Mamdani’s work influenced many others to explore the applicability of fuzzy controllers

to various control problems (Holmblad & Ostergaard 1982; Maiers & Sherif 1985; Sugeno &

Park 1993; Zhang et al. 1993). In recent years, research on fuzzy systems has been focussing on

investigating connections between fuzzy systems and neural networks, as well as exploring the

integration of rule-based and model-based approaches in fuzzy control, which are exemplified

by the work of Filev (1991; 1992) and Sugeno and Yasakawa (1993).

A fuzzy inference system is a process of formulating the mapping from a given input to an output

using fuzzy logic. The mapping then provides a basis from which decisions can be made, or

patterns discerned. Fuzzy logic starts with the concept of a fuzzy set. A fuzzy set is a set without

a crisp, clearly defined boundary. Unlike a classical set, which is a container that wholly includes

or wholly excludes any given element, in fuzzy sets an element can belong to a set partially. The
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Figure 2.5. Membership functions representing three fuzzy sets for the
variable “age”

degree of membership is defined through a generalized characteristic function called the

membership function. The values of the membership function are real numbers in the interval

[0,1], where 0 means that the element is not a member of the set, 1 means that it belongs to the

set entirely, and values in between represent that it belongs to the set with a partial degree of

membership. Figure 2.5 shows three membership functions representing three fuzzy sets labelled

as “young”, “middle” and “old”, all of them being fuzzy values of a variable “age”. As we can

see, the age 30 belongs to the fuzzy set “middle” to a degree of 0.7, to the “young” set to a degree

of 0.3 and to the “old” set to a degree of 0. 

 

The only condition a membership function must satisfy is that it must vary between 0 and 1. The

function itself can be an arbitrary curve whose shape we can define as a function that suits us

from the point of view of simplicity, convenience, speed, and efficiency. The simplest

membership functions are the triangular membership functions, which use three points and

straight lines to form triangles as shown in Figure 2.5. The trapezoidal membership function has

a flat top and is just a truncated triangle curve. Other commonly used membership functions

include the Gaussian distribution function, the sigmoid curve, and quadratic and cubic

polynomial curves. For detailed information on any of these membership functions, the reader

should refer to Kilr and Yuan (1995). 
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Now how are these fuzzy concepts used in connection with logic? Suppose there are two fuzzy

sets A and B. A common prescription for logical operations using fuzzy concepts is as follows:

• Intersection(AND):

:A 1 B (x) = minimum (:A (x), :B (x))                                                                                     (2.10)

• Union (OR)

:A c B (x) = maximum (:A (x), :B (x))                                                                                    (2.11)

• Set complement (NOT)

:not A  (x) = 1.0 - :A (x)                                                                                                           (2.12)

where :A (x) is the membership degree of x in A, and :B (x) is the membership degree of x in B.

Some researchers in fuzzy logic have explored the use of other interpretations of the AND and

OR operations. For example, the OR operation can also be implemented by the probabilistic OR

method, which is defined by the following equation:

:A c B (x) = :A (x) + :B (x) - :A (x) ×:B (x)                                                                          (2.13)

Fuzzy sets and fuzzy operations are the subjects and verbs of fuzzy logic. If-then rule statements

are used to formulate the conditional statements that comprise fuzzy logic. A single fuzzy if-then

rule assumes the form

if x is A then y is B

where A and B are fuzzy values defined by fuzzy sets. An example of such a rule might be

if service is good then tip is average

Note that good is represented as a fuzzy set, and so the antecedent is an interpretation that returns

a single membership degree between 0 and 1. On the other hand, average is also represented as

a fuzzy set, and the consequent is an assignment that assigns the entire fuzzy set average to the

output variable tip. This set will later be defuzzified, assigning one value to the output. The

concept of defuzzification is described later in this section. 



26

The antecedent of a rule can have multiple parts

if service is excellent or food is delicious then tip is generous

In this case all parts of the antecedent are calculated simultaneously and resolved to a single

number using the logical operators described earlier. The consequent of a rule can also have

multiple parts:

if temperature is cold then hot water valve is open and cold water valve is shut 

in which case all consequents are affected equally by the result of the antecedent. How is the

consequent affected by the antecedent? The consequent specifies a fuzzy set be assigned to the

output. The implication function then modifies that fuzzy set to the degree specified by the

antecedent. The most common way to modify the output fuzzy set is truncation using the min

function (where the fuzzy set is “chopped off’ as shown in Figure 2.6).
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If service is excellent or food is delicious  then tip = generous

1. Fuzzify 
inputs

service (crisp)

0.0

u(service==excellent) = 0.0

food (crisp)

u(food==delicious) = 0.7

0.7
excellent delicious

2. Apply OR 
operator (max)

If (0.0       or        0.7)   then tip = generous

max(0.0, 0.7) = 0.7

3. Apply 
implication 

operator (min) 

If                                            (0.7)                then tip = generous

0.7

generous

min(0.7, generous) tip(fuzzy)

Figure 2.6. An example of interpreting one fuzzy rule  



28

poor rancid      cheap

good
rule 2 has no dependency 

on input 2
                             average

       generous
excellent delicious

0 10 0 10 0% 25% 0% 25%

0 10 0% 25% 0% 25%

0 10 0% 25% 0% 25%

0% 25%

1. If service is poor or food is rancid then tip = cheap

2. If service is good                            then tip = average

3. If service is excellent or food is delicious then tip = generous

service = 3
input 1

food = 8
input 2

16%

tip = 16%
output

4. Apply 
aggregation 

method(max)

5. Defuzzify 
(average of 

max)

Figure 2.7. An example of interpreting three fuzzy rules

Figures 2.6 and 2.7 show the examples of interpreting one or more fuzzy rules in a fuzzy

inference system. The process consists of five parts: fuzzify inputs, apply fuzzy operator to

multiple part antecedents, apply implication method, aggregate all outputs, and defuzzify. The

details are as follows: 

1. Fuzzify inputs: Resolve all fuzzy statements in the antecedent to a degree of membership

between 0 and 1. In other word, this step involves taking crisp numerical input values and

determining the degree to which they belong to each of the appropriate fuzzy sets via membership

functions. For example, Figure 2.6 shows how well the food at our hypothetical restaurant (rated

on a scale of 0 to 10) qualifies with respect to the fuzzy variable “delicious”. In this case, the food

was rated as an 8, which, given the graphical definition of “delicious”, corresponds to : = 0.7 for

the “delicious” membership function.
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2. Apply fuzzy operator to multiple part antecedents: Once the inputs have been fuzzified, we

know the degree to which each part of the antecedent has been satisfied for each rule. If the

antecedent of a given rule has more than one part, the fuzzy operator is applied to obtain one

number that represents the result of the antecedent for that rule. This number will then be applied

to the output function. The input to the fuzzy operator is two or more membership values from

fuzzified input variables. The output is a single truth value. This is the degree of support for the

rule. Figure 2.6 shows an example of the OR operator max at work. The two different pieces of

the antecedent (service is excellent and food is delicious) yielded the fuzzy membership values

0.0 and 0.7 respectively. The fuzzy OR operator simply selects the maximum of the two values,

0.7, and the fuzzy operation for this antecedent is completed.  

3. Apply implication method: Use the degree of support for the entire rule to shape the output

fuzzy set. The consequent of a fuzzy rule assigns an entire fuzzy set to the output. This fuzzy set

is represented by a membership function that is chosen to indicate the qualities of the consequent.

If the antecedent is only partially true, (i.e., is assigned a value less than 1), then the output fuzzy

set is truncated according to the implication method. 

 

4. Aggregate all outputs: In general, one rule by itself has a limited effectiveness. What is needed

are two or more rules that can work together. The output of each rule is a fuzzy set. The output

fuzzy sets for each rule are then aggregated into a single output fuzzy set. Two commonly used

aggregation methods are: max (taking the maximum over all of the output sets of rules), and sum

(simply the sum of each rule’s output set) (Dyckhoff & Pedrycz 1984; Dubois & Prade 1985).

In Figure 2.7, three fuzzy rules have been placed together to show how the output of each rule

is combined, or aggregated, into a single fuzzy set  by using the max method.

5. Defuzzify: The input for the defuzzification process is a fuzzy set (the aggregate output fuzzy

set) and the output is a single number. The aggregate of a fuzzy set encompasses a range of

output values, and so must be defuzzified in order to resolve a single output value from the set.

Two of the common defuzzification methods are the centroid and maximum methods. In the

centroid method, the crisp value of the output variable is computed by finding the variable value

of the center of gravity of the aggregate output fuzzy set. In the maximum method, one of the

variable values at which the aggregate output fuzzy set has its maximum truth value is chosen
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as the crisp value for output variable. There are several variations of the maximum method that

differ only in what they do when there is more than one variable value at which this maximum

truth value occurs. One of these, the average-of-maximum method, returns the average of the

variable values at which the maximum truth value occurs. Figure 2.7 shows how a crisp value (tip

= 16%) is generated by the average-of-maximum method. 

2.3.3 Membership Function Construction Methods in Fuzzy Systems 

Since the notion of fuzzy sets was introduced by Zadeh, one of the main difficulties in the field

has been with the construction of membership functions (Bilgic & Turksen 1997). Almost all

membership function construction methods are based on an expert’s judgement and can be

classified into direct methods and indirect methods (Kilr & Yuan 1995). In direct methods,

experts are expected to give answers to questions of various kinds that explicitly pertain to the

constructed membership function. In indirect methods, experts are required to answer simpler

questions, easier to answer and less sensitive to the various biases of subjective judgement, which

pertain to the constructed membership function only implicitly. The answers are subject to further

processing. Both direct and indirect methods can be further classified to methods that involve one

expert and methods that require multiple experts. This results in four principle classes of methods

for constructing membership functions: direct methods/one expert, direct methods/multiple

experts, indirect methods/one expert, and indirect methods/multiple experts. Among these four

principle classes of methods, the following six methods have been commonly used (Norwich &

Turksen 1982; Chameau & Santamarina 1987; Turksen 1991): Polling (Hersh & Carmazza

1976), Direct Rating (Hersh & Carmazza 1976), Reverse Rating (Turksen 1988), Interval

Estimation (Chameau & Santamarina 1987), Membership Exemplification (Hersh & Carmazza

1976), and Pairwise Comparison (Kochen & Badre 1974). 

Unless a membership function can be defined in terms of a suitable similarity function with

respect to an ideal prototype, the above methods have one fundamental disadvantage (Kilr &

Yuan 1997): they require an expert (or experts) to give answers that are precise (or close enough)

to capture subjective judgements. This is often infeasible for complex concepts. In addition, the

answers given by the experts are always somewhat arbitrary, which can often lead to

inappropriate membership functions. It would be preferable to automatically construct

membership functions from the available data. Some efforts have been made in this direction:
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• Constructions based on mathematical functions. Methods for transforming membership

functions from mathematical functions were explored by Devi and Sarma (1985), Civanlar and

Trussell (1986), and Dubois and Prade (1986). An advantage of these methods is that the

membership function matches the sample data exactly. Its disadvantage is that the complexity

of the resulting mathematical function increases with the number of data samples. 

• Constructions by neural networks. Takagi & Hayashi (1991) discuss a neural network that

generates nonlinear, multi-dimensional membership functions which is a membership function

generating module of a larger system that utilized fuzzy logic. Yamakawa and Furukawa

(1992) presented an algorithm for learning membership functions using a model of the fuzzy

neuron. Their method uses example-based learning and optimization of cross-detecting lines.

They assign trapezoidal membership functions and automatically come up with its parameters.

• Constructions by a genetic algorithm (GA). The work carried by Mang et al. (1995) proposed

an algorithm to use the genetic algorithm (Goldberg 1989a) for adaptation of membership

functions. The method uses the GA to make small changes to the width and centre positions

of the membership functions.

An often mentioned drawback of neural networks and genetic algorithms is their non-

deterministic nature. When the neural network or the genetic algorithm is initialized with

different configurations, it is likely that the training or search process terminates at a different

local minimum. Thus different membership functions can be produced when neural network-

based or GA-based construction methods are employed. These different membership functions

may cause confusion for humans. Further more, both the GA and neural networks can be

computationally expensive. 

In Chapter 5, a novel approach of employing a P2 statistic-based feature selection algorithm to

automatically construct membership functions is presented. It provides an alternative approach

to other approaches and might be more appropriate and efficient for constructing membership

functions for some tasks. 
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2.3.4 Fuzzy Neural Networks

The interconnection between fuzzy systems and neural networks was originally recognized by

Kosko (1992) and further investigated by Buckley (1993), Buckley and Hayashi (1993), and

Buckley et al. (1993). These researches suggest that neural networks are eminently suited for

approximating fuzzy controllers and other types of fuzzy systems, as well as for implementing

these approximations in appropriate hardware. Although classical neural networks can be

employed for this purpose, attempts have been made to develop alternative neural networks, more

attuned to the various procedures of approximate reasoning. These alternative neural networks

are usually referred to as fuzzy neural networks. Various fuzzy neural networks (Lee & Lee 1974;

Keller & Hunt 1985; Pedrycz 1991; Carpenter et al. 1992; Gupta & Qi 1992; Horikawa et al.

1992; Pal & Mitra 1992; Simpson 1992; Yager 1992; Hayashi et al. 1993; Kasabov 1996) have

been suggested, which use neural network architectures to simulate fuzzy inference systems.

The series of steps to implement a basic fuzzy neural network system are: (1) convert real-valued

data into a fuzzified representation; (2) train the neural network with the fuzzified information;

and then (3) de-fuzzify the result to produce real values of the desired output. After the system

is trained to satisfaction, fuzzy rules can be extracted from the trained neural network. 

The model FuNN (Kasabov 1996) that is employed in this thesis consists of five layers of nodes:

an input variable layer; a condition elements layer (input fuzzy membership function); a rule

layer; an action elements layer (output fuzzy membership function); and an output layer. These

elements are shown schematically in Figure 2.8. Ordinarily, triangular membership functions

have been employed as models for assigning weights for the second and fourth layers.
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Figure 2.8. The fuzzy neural network (FuNN) architecture

The input layer represents the input variables. In the condition elements layer, each node

represents a fuzzy variable of an input variable, such as “delicious” or “rancid”. The condition

element layer performs fuzzification. The activation values of the nodes in the condition layer

represent the membership degrees to which the input value belongs to each of the appropriate

fuzzy sets of the respective input variables. In the simplified scheme shown in Figure 2.8, each

of the two inputs can be fuzzified in the condition layer by showing the degree of their

membership in a fuzzy set (such as the degree to which they are “delicious” or “rancid”). The

number of fuzzy variables need not be the same for the various inputs. Thus inputs could be

connected to two condition layer nodes (as shown in Figure 2.8, X1 is connected to A1 and A2,

and X2 is connected to B1 and B2), and other inputs could be connected to, say, four condition

layer nodes. 

In the rule layer, one node represents a single complex fuzzy rule. The function of the rule layer

is to apply the fuzzy operators to multiple part antecedents. The semantic meaning of the

activation value of a node in this layer is that it represents the degree to which the input data

matches the antecedent part of the fuzzy rule represented by this node. 

A node of the action elements layer represents a fuzzy variable of an output variable. The

function of this layer is to apply the implication method. The activation of the node represents
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the degree to which this membership function is supported by all fuzzy rules together, so this is

the level to which the membership function for this fuzzy variable is ‘chopped off’ according to

the rules and current facts. The output layer combines the output fuzzy sets for each rule into a

single fuzzy set, and then performs a defuzzification which converts the fuzzy set to a single real

number.

  

There are two versions of the FuNN according to the mode of training and adaptation (Ruan

1997):

1. Fixed version: when the FuNN fuzzy neural network is trained, the weights connecting the

outer layers (input layers and output layer) do not change; a  backpropagation algorithm is

used to adjust  the connection weights of the remaining part of the FuNN (condition elements

layer, rule layer and action elements layer) in order to achieve the desired performance.   

2. Adaptive version: the weights connecting the outer layers are also adjusted; in this mode all

the connection weights change during training. Adjustment of these outer layers means that

the triangular membership functions that are used in a FuNN to represent fuzzified

descriptions of the input variables in the condition elements layer and output variables in the

action elements layer are adjusted during the training of the net, but this is normally a separate

process. 

Three methods (Kasabov 1993b) for producing the membership functions employed by FuNN

are as follows:      

# A Fixed Centre-based Membership Function Selection Approach

A centre-based MF selection approach can be implemented by using three-point triangular

membership functions as shown in Figure 2.5. The membership functions are spaced equally

according to the minimum and maximum values of the input data. With these triangular

membership functions each input value will belong to no more than two fuzzy sets, and their

membership degrees will always sum to one. Though this approach is straightforward, the

division into equally spaced membership functions may be naïve and inappropriate for some data

sets.       
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Figure 2.9. Initial and adjusted membership functions for a fuzzy
variable used in a FuNN fuzzy neural network

# Manual Adjustment of Centres of Membership Functions 

For triangle-shaped MFs, the centres can be adjusted manually. As shown in Figure 2.9, heavy

solid lines represent the initial membership functions of a variable x, and light solid lines

represent the asymmetrical membership functions after adaptation. In this case a rigid partitioning

is often used to establish a region within which each centre can move but not cross. The

adjustment must satisfy the restrictions imposed on the membership functions (the movements

of their centres cannot take them out of the membership function’s partition). Generally, manual

alterations only adjust the membership functions slightly. 

       

         

# Genetic Algorithm for Adaptation of Membership Functions

The fuzzy membership functions in a FuNN can also be adjusted by an approach based on a

genetic algorithm. Since triangular membership functions are employed, only the centres need

to be represented in the chromosome of the GA module, making the computation not too

expensive. The permitted amount of movement of these centres is also restricted by setting fixed

limits along the horizontal axis (see Figure 2.9).

2.4 Feature Selection Methods  
Features, which are also called attributes, properties, or characteristics, can have discrete or

continuous (numeric) values. A collection of features with their values forms a flat data file that
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describes an application in which each line describes an instance. An instance is a pair (x, f(x)),

where x is an N-dimensional feature vector, and f(x) is one of the predefined classes (categories).

In real-world applications, some of the N original features are often completely

irrelevant/redundant to the target concept f(x). An irrelevant feature does not affect the target

concept in any way, and a redundant feature does not add anything new to the target concept.

Feature selection is a process that picks a subset of features that are relevant to the target concept.

The rest of this section offers an overview of the various feature selection methods, and

particularly discusses a P2 statistic-based discretization algorithm, called the Chi2 algorithm.

2.4.1 Overview

Most feature selection methods can be grouped into two categories: exhaustive or heuristic search

of an optimal set of M attributes. For example, Almuallim and Dietterich’s FOCUS algorithm

(1994) starts with an empty feature set and carries out exhaustive search until it finds a minimal

combination of features that is sufficient to construct a hypothesis consistent with a given set of

examples. It works on binary, noise-free data. Its time complexity is O(min(NM , 2N )). They

proposed three heuristic algorithms to speed up the search.

There are many heuristic feature selection algorithms. The Relief algorithm (Kira & Rendell

1992) assigns a ‘relevance’ weight to each feature, which is meant to denote the relevance of the

feature to the target concept. Relief samples instances randomly from the training set and updates

the relevance values based on the difference between the selected instance and the two nearest

instances of the same and opposite classes. According to Kira and Rendell, Relief assumes two-

class classification problems and does not help with redundant features. If most of the given

features are relevant to the concept, it would select most of them even though only a fraction

maybe necessary for concept description. The PRESET algorithm (Modrzejewski 1993) is

another heuristic feature selector that assumes a noise-free binary domain and uses the theory of

Rough Sets (Pawlak 1991) to heuristically rank the features. Since PRESET does not try to

explore all combinations of the features, it is certain that it will fail on problems whose attributes

are highly correlated where the combinations of a few attributes do not help in finding the

relevant attributes. 
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According to Liu & Motoda (1998), the exhaustive search approach may be infeasible in practice

and the heuristic search approach can reduce the search time significantly, but may fail on hard

problems and cannot remove redundant attributes. 

There are other approaches to determine the most significant feature(s) through information

measures (Shannon 1948; Wiener 1948). From the information measures point of view,

information is a way of measuring the uncertainty of the receiver when he receives all messages.

If the receiver knows what is coming, his expected surprise level (uncertainty) is low; if he does

not know at all what is coming, a reasonable assumption is that all messages have almost equal

probabilities to come, his expected surprise is high. In the context of classification, messages are

classes. An information measure U is referred to as the uncertainty function concerning the true

class, and is defined so that larger values for U represent higher levels of uncertainty. A feature

should be selected if it can reduce uncertainty. A commonly used uncertainty function is

Shannon’s entropy (Shannon 1948). Many other uncertainty functions have also been suggested.

They were briefly reviewed by Ben-Bassat (1982). The idea of information measures is used in

ID3 (Quinlan 1986) and C4.5 (Quinlan 1993) for selecting a feature to grow a decision tree.

In recent years, the broad interest in data pre-processing has lead to another active research field:

feature transformation (Liu & Motoda 1998). One of the variants of feature transformation is

feature construction. Feature construction is a process that discovers missing information about

the relationships between features and augments the space of features by inferring or creating

additional features (Matheus 1991; Wnek & Michalski 1994). For example, a two dimensional

problem (say, A1 =  width and A2  = length) may be transformed to a one-dimensional problem (B1

= area) after B1 is discovered.

Some learning algorithms have built-in feature selection, for example, ID3 (Quinlan 1986),

FRINGE (Pagallo & Haussler 1990) and C4.5 (Quinlan 1993). The experimental results in

(Almuallim & Dietterich 1994) suggest that one should not rely on decision tree induction

methods for feature selection, since these learning algorithms (e.g., ID3 or FRINGE) select

irrelevant features on some data sets, which can lead to a deterioration of predictive accuracy. 
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The use of neural networks as a feature selector was reported by Setiono and Liu (1997a). They

proposed a method that uses a three-layer feed-forward neural network as a tool to determine

which attributes are to be discarded. The neural network is trained with the complete set of

attributes as input. For each attribute in the network, the accuracy of the network is computed

with all the weights of the connections associated with this attribute set to zero. The attribute that

gives the smallest decrease in the network accuracy is removed. The network is then retrained

and the process is repeated. A network pruning algorithm (Setiono 1997) is the foundation of the

proposed method. By adding a penalty term to the error function of the network, redundant

network connections can be distinguished from  relevant ones by their small weights when the

network training process has been completed. Setiono’s pruning algorithm and other penalty

term-based pruning algorithms (Hanson & Pratt 1989; Ji et al. 1990; Weigend et al. 1991) require

the value of the pruning-threshold 02 to be specified manually:  a value of 02 that is too large

or too small will over- or under-prune the weights of the network. An extreme example of under-

prune is when all weights remain in the network. Over-prune will lead to the elimination of too

many weights, thus causing the accuracy level of the network to drop too much. It is therefore

ideal to let the weights determine what value 02 should take in order to avoid over- or under-

removal of the weights. In Chapter 4, three different mechanisms to automatically select 02 are

proposed.  

Feature selection algorithms can also be divided based on the data types on which they operate.

Many feature selection algorithms (Ross et al. 1994; Kira & Rendell 1992) have been crafted to

work effectively on discrete data or, even more strictly, on binary data. In order to work with data

having numeric attributes, a common practice for those algorithms is to discretize the data before

conducting feature selection. The Chi2 algorithm (Liu & Setiono 1995a) provides a way to select

features directly from numeric attributes while discretizing them. The Chi2 algorithm stems from

Kerber’s ChiMerge (Kerber 1992) algorithm which is designed to discretize numeric attributes

based on the P2 statistic. ChiMerge requires a user to specify a proper significance level (")

which is used for merging values of all the attributes. The Chi2 algorithm extends ChiMerge by

automatically selecting " until further merging is discontinued by the stopping criteria.

Furthermore, the Chi2 algorithm's capability to perform not only discretization but also feature

selection has made it a big step forward from ChiMerge. The Chi2 algorithm is described in

detail below.    
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2.4.2 A P2 Statistic-based Discretization Algorithm - the Chi2 Algorithm

The Chi2 algorithm is a general algorithm that uses the P2 statistic to discretize numeric attributes

repeatedly until some inconsistencies are found in the discretized data. By repeated application

of the approach, a reduced set of features can be achieved.

The method reduces the complexity of data in two dimensions: a vertical dimension (number of

instances) and a horizontal dimension (number of features). The P2 statistic is employed to

continue discretizing the numeric attributes until the discriminating power of the original

continuous-valued data cannot be maintained. This step significantly reduces the possible data

space from a continuum to discreteness according to the characteristics of the data by merging

attribute values into sets of intervals. After discretization, duplicates may occur in the data.

Removing these duplicates reduces the amount of data. Hence, the original database, if viewed

as a large table, is shortened in its vertical dimension. Horizontal reduction is achieved by

attribute selection which is accomplished by retaining only those attributes having more than one

discrete value.

The goal of the Chi2 algorithm is gradually to place the data items into a contiguous set of

intervals,  each of which contains a set of items. For the purpose of later analysis, all the data

items in a given interval are considered to be essentially the same. Initially each data item is

considered to be in its own, unique, interval. As the algorithm is applied, adjacent intervals are

merged and so that they will include several data items.  

The Chi2 algorithm is oriented around the P2 statistic and consists of two phases. In the first

phase each attribute i is associated with some significance level, say 0.5 at the outset. The data

values of this attribute are sorted, and each value is considered to be a resident of an (initially

single-valued) interval. Then the P2 value is calculated for each pair of adjacent intervals. The

formula for computing the P2 value is:

                                                                                              (2.14)χ 2
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where

k = number of classes,

    Aij = number of patterns in the i-th interval, j-th class,

   Ri = number of patterns in the i-th interval,

   Cj = number of patterns in the j-th class,

   N = total number of patterns,

   Eij = expected frequency of Aij, Eij = Ri*Cj/N.

Starting with the lowest P2 values, adjacent intervals are merged until all pairs of intervals have

P2 values greater than the P2 value associated with the current significance level for the given

attribute. This is done for each attribute. These merged intervals now represent a discretization

of the data set. With the reduced number of intervals, it is possible that there are some

inconsistencies (two identical data elements associated with different output class values) in the

data set. If the number of observed inconsistencies remains below a user set value, *, the above

process is repeated with a decremented significance level for the attributes (and hence a larger

tolerated P2 value). At the end of the first phase, the data set is discretized, and the number of data

elements has been reduced. 

In the second phase of the Chi2 algorithm, each attribute i is associated with an individual

significance level, sigLevel[i], and takes its turn in the merging process. Consistency checking

is conducted after each attribute’s merging; if the consistency constraint is exceeded, attribute

i will not participate in further merging. The second phase ends when no attributes can be further

merged. If during this process an attribute has been merged to a single interval, then it means that

attribute (feature) is not useful for data discrimination and can be dropped from further

consideration.  By this reduction, feature selection has been achieved. 

There are some limitations of the Chi2 algorithm (Liu & Setiono 1995b). It can only be used to

discretize data and select features for supervised learning tasks, since class information is vital

in the use of the P2 statistic. In addition, it only works on numeric attributes; if there are mixed

(numeric and discrete) attributes, the Chi2 algorithm can be specified to operate only on the

numeric attributes for discretization and feature selection.



41

Experimental results (Liu & Setiono 1995b) have shown that, as a tool of data pre-processing,

Chi2 serves as a useful means for feature selection and the discretization of numeric attributes.

Its effectiveness will be further demonstrated by means of experiments on six practical data sets

reported in Chapter 4. 

2.5 Rule Extraction Methods
It is often desirable to have a set of meaningful and coherent rules that reveal hidden relationships

that lie buried within data sets. Such rules are a form of knowledge that can be verified by human

experts, and then passed on and expanded. The elaboration of such rules extracted from data can

lead to improved theories concerning the application domain.

2.5.1 Overview

There are many ways to characterize  rule extraction algorithms. Since neural networks have been

widely applied to solve learning problems, one approach used here is to divide rule extraction

algorithms into two classes based upon whether or not neural network technology is used. 

In the past few years, attempts have been made at finding effective algorithms to extract rules

from trained feed-forward neural networks:

• The KT algorithm (Fu 1994) searches for subsets of connections to a network node such that

summed weights exceed the bias associated with that node. It is assumed that the node’s

activation value is close to either 0 or 1. By searching for the proper subsets of the input

connections, sets of rules are generated to describe under what conditions the node’s

activation  will take one of the two values. 

• The M-of-N algorithm (Towell & Shavlik 1993) clusters the weights of a trained network into

equivalence classes. The complexity of the network is reduced by eliminating unneeded

clusters and by setting all weights in each remaining cluster to the average of the cluster’s

weights. Rules with weighted antecedents are obtained from the remaining links of the

simplified network. 

• More recently, a method that uses sampling and queries was proposed (Craven & Shavlik

1994). Instead of searching for rules from the network, the problem of rule extraction is
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viewed as a learning task. Given a trained network, this method uses queries to induce a

decision tree that approximates the function represented by the model.

• Thrun (1995) described a rule extraction algorithm called Validity Interval Analysis (VIA) that

divides the activation range of each node into intervals. The problem of determining the

boundary of these intervals is considered as a linear programming problem. Thrun uses two

methods to explore a space of rules: specific-to-general and general-to-specific. For tasks with

numeric features, he uses the specific-to-general method that starts with training examples as

seeds for rules. Each of these initial rules describes a point in the instance space. The rules are

iteratively generalized by converting one of the rule’s literals into an interval, or by increasing

the bounds of an interval in an existing rule.  

• Setiono and Liu (1995) developed a rule extraction algorithm which was based on the fact that

it is generally possible to replace the continuous activation values of hidden nodes by a small

number of discrete values. Rule extraction is processed in two steps. First, rules that describe

the network outputs in terms of the discretized activation values of the hidden nodes are

generated. Second, rules that describe each discretized hidden node activation value in terms

of the network inputs are constructed. By merging the rules obtained in these two steps, a set

of rules that relates the inputs to the outputs of the network is obtained. While the algorithm

can generate symbolic rules that mimic the predicted outcome of the original network, it

works only for data with binary inputs (the implicit assumption is that the various hidden node

activation values are determined by only a small number of input values, and excludes

problems with continuous attributes where there can be infinitely many possible values taken

by these attributes.). A further development of the algorithm, called NeuroLinear, was

presented by Setiono and Liu (1997b). The NeuroLinear algorithm follows a two-step rule

extraction process which generates rules that describe the relationship from the hidden layer

to the output layer and from the input layer to the hidden layer. Because each rule condition

is given in the form of a linear inequality 

                                                                                                                       (2.15)c xi i
i
∑ < η

where ci is a real coefficient, xi the value of the attribute i, and 0 a threshold, continuous attributes

can be used as inputs without requiring discretization. A detailed description of the algorithm will

be given later in Section 2.5.4. 
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Parallel to the development of techniques for extracting rules from trained feed-forward neural

networks, there are several techniques available to extract fuzzy rules from fuzzy neural

networks. Horikawa et al. (1992) developed three types of fuzzy neural networks which can

automatically identify the underlying fuzzy rules and tune the corresponding membership

functions by modifying the connection weights of the neural networks using the backpropagation

algorithm. Another method, ReFuNN, is a simple approach for rules extraction from a trained

FuNN module. This will be explained later in Section 2.5.5.

 

Many existing approaches are available to extract knowledge directly from raw data without

using neural networks. Shigeo and Lan (1995) proposed a method for extracting fuzzy rules

directly from numerical input-output data for pattern classification. The GABIL system (De Jong

et al. 1990) uses a genetic algorithm to learn and refine concept classification rules from its

interaction with the environment. Decision trees involve a recursive partitioning of the feature

space, based on a set of rules that are learned by an analysis of the training set. A tree structure

is developed where, at each branching, a specific decision rule is implemented, which may

involve one or more combinations of the attribute inputs. A new input vector then “travels” from

the root node down through successive branches until it is placed in a specific class. In essence

then, the classification is determined by describing the path from the root node of the tree to a

leaf node – each nodal set of rules progressively refining the classification in a hierarchical

manner.  The X2R algorithm (Liu & Tan 1995) is a straightforward technique for generating a

set of rules based on a data set with discrete attributes. Continuous-valued data must first be

discretized before applying  the X2R algorithm. Since Decision trees, the X2R algorithm, the

NeuroLinear approach, and the ReFuNN approach have been demonstrated to be practical tools

to analyze data (Bradshaw et al. 2001; Bradshaw et al. 2002; Zhou et al. 2001), and will be

applied extensively in the  experiments reported in the later chapters, more detailed descriptions

will be given in the following four sections. Their applications to solving real-world problems

will be presented in Chapter 8.

2.5.2 Decision Trees

In this section, we focus on the most widely used decision tree induction algorithm, C4.5. Figure

2.10 depicts an example decision tree for the problem domain of heart disease diagnosis which

concerns medical cases of heart diseases (UCI 1998). As shown in the figure, a decision tree is
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rest EGG

abnomal normal hypertrophy

sex cholesterol > 200okay

male female

disease okay

yes no

okay disease

Figure 2.10. A decision tree

a rooted, directed acyclic graph consisting of a set of internal nodes (depicted as rectangles) and

a set of leaves (depicted as ovals). Each internal node in a decision tree has an associated logical

test based on the features in the domain. When classifying an example, the role of an internal

node is to send the example down one of the outgoing branches of the node. The decision as to

which branch an example is sent down is determined by the logical expression at the node. For

C4.5, this expression considers a single feature, and thus the outcome of the test is determined

by the value of that feature in the given example. In some decision trees, the test may be a

function of several features. In Figure 2.10, each internal node tests a single feature, and the

outgoing branches are labelled with the possible outcomes for a given test. For example, the root

of the tree looks at the feature “rest ECG”, which has three possible values: “abnormal”,

“normal”, and “hypertrophy”. Similarly, the rightmost child of the root node tests the real-valued

feature “cholesterol” against a threshold of 200.

The classification procedure involves starting at the root of the tree, and then traversing a path

through the tree that is determined by the outcomes of the tests at the internal nodes encountered

along the path. The leaves of a decision tree do not have logical tests, but instead have associated

class labels; in the figure, leaves are labelled either with the class “disease” or with “okay”. When

an example reaches a leaf, the class associated with the leaf is the prediction made by the decision

tree for that example. 
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After C4.5 has grown a tree, it then tries to simplify it by pruning away various subtrees and

replacing them with leaves. C4.5's pruning method is called Error-based Pruning (Quinlan

1986), and it considers replacing each internal node by either a leaf or one of the node’s branches.

In order to decide if a change should be made, C4.5 computes a confidence interval around the

resubstitution (training) error rate of the node. A change should be made to a subtree if the

resulting resubstitution error rate for the modified subtree is within a C% confidence interval of

the unmodified subtree’s error rate, where C is a parameter of the algorithm that determines how

conservative the pruning process should be. Apart from error-based pruning, there are a number

of other techniques (Breiman et al. 1984; Niblett & Bratko 1986; Mingers 1987; Quinlan 1987)

for pruning decision trees; a comparative analysis of these techniques can be found in Esposito

et al. (1997).  

   

After a tree has been pruned, a collection of rules can be generated from the tree. The key ideas

are:

# Every path from the root of a tree to a leaf gives one initial rule. The left-hand side of the rule

contains all the conditions established by the path, and the right hand side specifies the class at

the leaf.

# Each such rule is simplified by removing conditions that do not seem helpful for discriminating

the nominated class from other classes, using a pessimistic estimate of the accuracy of the rule.

# For each class in turn, all the simplified rules for that class are sifted to remove rules that do

not contribute to the accuracy of the set of rules as a whole.

# The set of rules for the classes are then ordered to minimize false positive errors and a default

class is chosen.    

2.5.3 X2R: A Fast Rule Generator

For a data collection that represents a set of discrete inputs and outputs, one can generate a set

of rules that summarize this data set. The X2R algorithm (Liu & Tan 1995) is a straightforward

technique for generating such a set of rules. In order to use it, one must have discrete inputs and

outputs, so if one is dealing with continuous-valued data, the data must first be discretized by

some standard technique. The X2R algorithm proceeds in three steps:
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1. Generate a rule to cover the most frequently occurring input pattern. This is the shortest rule

that can differentiate the input pattern from input patterns associated with other output classes.

Then remove this input pattern from further consideration and iteratively repeat this step.

2. The generated rules are then grouped in terms of their output class labels.

3. For each rule cluster, remove redundant rules and drop more specific rules in favor of more

general rules for the cluster. A default rule is chosen in the case when no rule can be applied to

an input pattern.

This procedure generates an ordered set of rules (the rules must be applied in a specific order).

2.5.4 NeuroLinear Approach

The NeuroLinear approach (Setiono & Liu 1997b) is an algorithm to extract oblique decision

rules from trained feed-forward neural networks and thereby derive knowledge about the

mapping of inputs to outputs that is more readily understandable. The NeuroLinear rule

extraction is performed in the following steps:

1.  Select and train a feed-forward, multi-layer perceptron neural network to meet a prespecified

accuracy requirement. Use the hyperbolic tangent function as the hidden layer activation

function. The pruning algorithms can then be used to remove the redundant connections while

maintaining the network’s performance. 

2.  Use the Chi2 algorithm to discretize the activation values of the hidden neural network nodes.

3.  Extract a set of rules that reflects the relationship from the hidden layer to the output layer in

the network. 

The rules that describe the network outputs in terms of the discretized network activation

values (also named as “the discrete intermediate outputs”) are extracted. The X2R approach

can then further generate a set of order-sensitive rules which cover the most frequently

occurring patterns presenting in the rules. 
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4.  Extract a second set of rules that reflects the relationship from the input layer to the hidden

layer in the network. 

The rules that describe each discretized hidden node activation value in terms of the network’s

inputs are extracted. Let N be the number of intervals found by the Chi2 algorithm for the

activation values of hidden node H. There are N+1 boundaries to form these N intervals: -1

= m0 < m1 < ... < mN  = 1. The activation value of hidden node H falls into the interval [mj-1,

mj] if the sum of its weighted inputs satisfy

                                 tanh-1(mj-1) # the sum of the weighted inputs < tanh-1(mj)                 (2.16)

where tanh-1(x) is the inverse of the hyperbolic tangent function

                                                                             (2.17)tanh ( ) log(( ) / ( )) /- = + -1 1 1 2x x x

5. With the two sets of rules, it is sometimes convenient to combine them into a single set of rules

(from input values to output values).

For illustration purposes, next it is described how rules are extracted by NeuroLinear for a well-

known Iris Data Classification (Fisher 1936). For a detailed description of the Iris Data

Classification data set, the reader should refer to Chapter 3. 

10-fold cross validation was applied to the 150 samples of iris data, which leads to the training

set and the testing set for each partition containing 135 samples and 15 samples, respectively. For

illustration purposes, one partition was randomly selected for the extraction of rules using

NeuroLinear. A standard fully connected three layer feed-forward neural network was used. The

number of input nodes was 4, and the number of nodes in the output layer was 3, as the three

output attributes 0, 1, and 2 were coded as {1, 0, 0}, {0, 1, 0}, and {0, 0, 1}. We label the inputs

sepal length, sepal width, petal length, and petal width as I0, I1, I2 and I3, respectively. The

BFGS algorithm was used as the neural network training method. After the training and pruning
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process, only 2 of the original 5 hidden nodes remained. The neural network made correct

predictions of 98.52% on the training set and 93.33% on the test set.

Then the clusterization procedure, Chi2, was used to discretize the hidden node activation values

associated with all 135 training sample. It found 2 intervals in each of the 2 remaining hidden

nodes. The intervals of the 2 remaining hidden nodes were generated and are shown in Table 2.1.

Table 2.1. Intervals of hidden nodes

Hidden Node Intervals

Hidden node 1

Hidden node 2

[-1, 0.50), [0.50, 1]

[-1, 0.75), [0.75, 1]

                              

A unique integer value between 1 and 4 was given to represent one of these 4 intervals associated

with hidden nodes. For example, 1 represents the first interval [-1, 0.50) at hidden node 1, 2

represents the second interval [0.50, 1] at hidden node 1, and 4 represents the last interval [0.75,

1] at hidden node 2. Thus, a new data set with 2 columns of discrete values was generated as

shown in Table 2.2. The output classes for these samples were their original class labels, which

were values ranging from 0 to 2. After removing all duplicates, only 4 unique samples remained.

The frequencies associated with each unique sample are also shown in Table 2.2. 

Table 2.2. The combinations of the discretized activation values at the two remaining hidden

nodes in the pruned network trained for the Iris Data Classification data set

Discretized Activation Values

(Discrete Intermediate Outputs)

Output Class Frequency

Hidden node 1

(a1)

Hidden node 2

(a2)

unique sample 1 2 3 0 48

unique sample 2 1 4 0 1

unique sample 3 2 4 1 43

unique sample 4 1 4 2 43
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Table 2.2 can be interpreted as a set of rules which describes the internal relationship from the

hidden layer to the output layer in the neural network. For example, the first row in the Table 2.2

can be interpreted as:

If the discrete intermediate output a1 = 2 

  and 

   the discrete intermediate output a2 = 3 

then output class = 0

where a1, and a2 represent the discrete activation value of the first hidden node, and the discrete

activation value of the second hidden node, respectively. Then the above rule can be rewritten

in its original term as:

If a1 0[0.50, 1] and a2 0[-1, 0.75)  then output class = 0

An order-sensitive rule set (the rules should be fired in sequence) can be further generated by

means of the X2R algorithm based on the frequencies of the samples shown in Table 2.2. The

rules are as follows:

1. If  the discrete intermediate output a2 = 3

   then output class = 0

2. If  the discrete intermediate output a1 = 2

   then output class = 1

3. Default rule (output class = 2).

By using the weights of the pruned network and the boundaries of the intervals found by the Chi2

algorithm, another set of rules which maps from the original input attributes to the discrete

activation values (discrete intermediate output) was generated. For instance, the condition the

discrete intermediate output a1 = 2 is satisfied by a sample if and only if the network’s

first hidden node activation value is located in the interval [0.50, 1]. An activation value of a

sample will be in this interval if and only if the weighted sum of its input is greater than or equal

to tanh-1(0.50) = 0.55. Similarly, the condition the discrete intermediate output a2 = 3 is

satisfied by a sample if and only if the second hidden node activation values of a sample will fall
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in the interval [-1, 0.75), and this will occur if and only if the weighted sum of the sample’s input

is less than tanh-1(0.75) = 0.97. 

Therefore, for hidden node 1, from the network connections we find that 

If 4.95 × I1 - 8.93 × I2 - 12.68 × I3 + 13.00 < 0.55

then the discrete intermediate output a1 = 1

If 4.95 × I1 - 8.93 × I2 - 12.68 × I3 + 13.00 $ 0.55

then the discrete intermediate output a1 = 2

Similarly, for hidden node 2, we have that

If 2.58 × I3 < 0.97

then the discrete intermediate output a2 = 3

If 2.58 × I3 $ 0.97

then the discrete intermediate output a2 = 4

With these two levels of rule sets described above, a single set of rules from input values to

output values can be easily obtained by combining them together. An example rule is shown

below:

If 2.58 × I3 < 0.97 then output class = 0  

2.5.5 ReFuNN Approach

The ReFuNN (rules extraction from a fuzzy neural network) approach (Kasabov 1993a) is a

simple method for extracting weighted fuzzy rules from FuNN module as described in Section

2.3.4 and illustrated in Figure 2.8. A set of rules {rj} is extracted from a trained FuNN module

as follows. All the connections to an action element neuron Cj that contribute significantly to its

possible activation (their absolute values are above a defined threshold Tha), are retained and

their corresponding nodes Rj in the rule layer are analysed further. Only condition element nodes

which support activating the chosen rule neuron Rj will be used in the antecedent part of a rule

rj (the absolute values of connection weights are above a threshold Thc). The weights of the
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Fuzzification Module

      Altitude             Rainfall              Temperature          Distance 

  AltA   AltB   AltC AltD   AltE                RainfallA - E                     Temprature A - E              Distance A - E             

.  .   .  .  .  .
Node1Node0 Node19

-16.482 -2.186

12.592 -8.566
5.019

13.469 -19.502

Defuzzification Module

Suitability

Figure 2.11. Connection weights of a trained FuNN are interpreted as
fuzzy rules by the ReFuNN algorithm

connections between the condition element neurons and the rule nodes are taken as relative

degrees of importance of the antecedent fuzzy propositions. The weights of the connections

between a rule node Rj and an action elements node Cj define  values for the certainty degree CFj.

An example is shown below (see Figure 2.11). All input values range among the values A, B, C,

D, and E, with A being the lowest value and E being the highest value. Both Tha and Thc are set

at 2 for this illustration. The negative weights are represented by using “not” in the rule.

If   <ALTITUDE is not A 16.482> and <RAINFALL is not C 2.186> 

     and <TEMPERATURE is B 12.592> and <DISTANCE is not C 8.566> 

     and <DISTANCE is D 5.019> 

then <SUITABILITY is A 13.469> and <SUITABILITY is not B 19.502>.

In order to generate a fuzzy rule set that achieves better inference performance and involves

simpler rules (with fewer rule components) than that produced by the above method, a second
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fuzzy rule extraction method was developed (Purvis et al. 1999). According to this method the

FuNN is trained as before. Then all node connections that have an absolute value of weight below

a certain threshold value * were constrained to be zero. Then the fuzzy network is retrained. This

process can be repeated, if necessary. Weighted fuzzy rules are then extracted. Like the first

fuzzy rule extraction method, rule components in the consequent part are only derived from those

connections to the action elements layer that have their weights above a certain threshold value

Tha. However for their corresponding rule nodes in the rule layer, only the strongest input

connections from the condition elements layer are used in the antecedent part of a rule, with all

other input connections constrained to be zero. When rules are extracted, each node in the rule

layer represents a single fuzzy rule, which has only the strongest connection from each fuzzy

input variable represented in its antecedent part . This will result in fewer components in the

antecedent part of the rule than the above-described method. 

A representative rule from this method shown below is taken from Purvis et al. (1999) when the

threshold value * was set to 0.5:

If   <ALTITUDE is A 9.014> and <RAINFALL is A 9.841> 

     and <TEMPERATURE is not B 5.095> and <DISTANCE is A 10.63> 

then <SUITABILITY is D 6.13>

The experimental results in Purvis et al. (1999) have shown that the second fuzzy rule extraction

method has a superior performance over the first one in terms of number of extracted rules and

predictive accuracy. In this thesis, for all experiments conducted using the ReFuNN approach,

the second fuzzy rule extraction method was used.

The fuzzy inference procedure, which is used in connection with the derived fuzzy rule sets, is

explained below:

• The overall degree of matching for the left-hand side of each rule is calculated, which is a

weighted sum of the membership values to which input data belong to all its antecedent

elements. A rule fires if and only if the overall matching degree of its antecedent part is

positive. 
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• Then the degree to which each of the output membership functions is inferred collectively by

all the rules is determined by calculating a weighted sum of all the certainty degrees

associated with that output membership function from the activated rules. 

This is illustrated in the following example, which we term, the Golf Course Problem. The

description of this problem can be found in Chapter 3. The research goal here is to find fuzzy

rules concerning four  attributes (Altitude, Rainfall, Temperature, and Distance-To-Urban-

Centre) that will identify ‘good’ sites for locating a golf course.

Suppose, for the Golf Course Problem, the altitude of a block is 267.8 meters, the rainfall is 2,400

mm per annum, the temperature is 10.5 degrees, and the distance is 260 kilometers. The

membership function values of the input variables to which these data belong was found to be:

: A: very low (Altitude) = 0.3

: B:  low (Altitude) = 0.7

: C: medium (Altitude) = : D: high (Altitude) = : E: very high (Altitude) = 0

: A: very light (Rainfall) = : B:  light (Rainfall) = : C: medium (Rainfall) = 0

: D: heavy (Rainfall) = 0.9

: E: very heavy (Rainfall) = 0.1

: A: very low (Temperature) = 1.0

: B: low (Temperature) = : C: medium (Temperature) = : D: high (Temperature) = : E: very high (Temperature) = 0

: A: very near (Distance) = : B: near (Distance) = : C: somewhat distant (Distance) = : D: distant (Distance) = 0

: E: very distant (Distance) = 1.0

Two extracted fuzzy rules are as follows (output variable Suitability ranges from A to E, with A

representing Very Unsuitable and E representing Very Suitable):

If   <ALTITUDE is not A 16.482> and <RAINFALL is not C 2.186> 

     and <RAINFALL is E 2.423> and <TEMPERATURE is A 12.592> 

     and <TEMPERATURE is B 5.095> and <DISTANCE is not C 8.566> 

     and <DISTANCE is D 5.019> 

then <SUITABILITY is A 13.469> and <SUITABILITY is not B 19.502>

If   <ALTITUDE is B 3.393> and <ALTITUDE is C 4.722> 

     and <RAINFALL is D 8.021> and <RAINFALL is E 3.045> 
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     and <TEMPERATURE is D 20.815> and <DISTANCE is not C 12.624> 

     and <DISTANCE is D 2.345> 

then <SUITABILITY is not A 14.100> and <SUITABILITY is B 16.672> 

     and <SUITABILITY is E 8.627>

Then, overall degrees of matching of the left-hand side of the above two rules are calculated by

the following summations:

-16.482×0.3+2.186×0+2.423×0.1+12.592×1.0+5.095×0-8.566×0+5.019×0 = 7.8897

3.393×0.7+4.722×0+8.021×0.9+3.045×0.1+20.815×0-12.624×0+2.345×1.0 = 12.2435

which are all positive, so both rules will fire. When this is done, an overall degree of <Suitability

is A: very unsuitable> is calculated as 13.496-14.1 = -0.604, <Suitability is B:unsuitable> is

calculated as -19.502+16.672 = -2.83, and <Suitability is E:very suitable> = 8.627. If the logistic

function of equation (2.5) is applied at the action elements layer, then the membership function

values for the above three fuzzy variables are as follows:

: A: very unsuitable (Suitability) = 0.353

: B: unsuitable (Suitability) = 0.057

: E: very suitable (Suitability) = 0.9998

If the maximum (also called winner-take-all) technique is employed as the defuzzification

method, the final crisp solution 4 is obtained. That means, the selected block is an excellent site

to build a golf course according to the fuzzy rules.   

  

With the use of the ReFuNN approach, only those weights which have their values above a

certain threshold are taken as rule elements. This conversion can cause loss of information, which

may lead to less satisfactory performance. 

2.6 Classifier Systems and Genetic Algorithms
As described earlier, a market-based rule learning (MBRL) system proposed in this thesis is a

rule-learning system inspired by a classifier system. In this section, we first introduce what a
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classifier system is. Then an overview of classifier systems is provided. Finally, current

difficulties existing in classifier systems are outlined.  

Since 1978, two approaches have been developed in the field of classifier systems: the Michigan

Approach (Holland & Reitman 1978) and the Pitt Approach (DeJong 1988). This study employs

the Michigan approach classifier system because it is the classical approach, having proven itself

and undergone more development. 

 

2.6.1 What is a Classifier System?

A classifier system is a machine learning system that learns syntactically simple string-encoded

rules (called classifiers) to guide its performance in an arbitrary environment (Holland & Reitman

1978). A classifier system is a type of reinforcement learning system (Minsky 1963; Michie

1974) that has three major components: a rule and message system, apportionment of credit

algorithm, and the genetic algorithm.

These three components are described in more detail as follows:

# Rule and Message System 

Each classifier consists of a rule or conditional statement whose constituents are words drawn

from the ternary alphabet (0,1,#). It has one or more conditions as the antecedent, an action

statement as the consequent, and an associated strength. The rule portion has the following

template:

IF <condition1>&<condition2>&...<conditionN>

Then <action>

where,
<condition> is encoded as a string from the alphabet {0, 1, #}

<action> is encoded as a string from the alphabet {0, 1}

The “#” symbol acts as a wild card or “don’t care” indicator in the condition, matching either

a 0 or 1 -- the more “don’t care” symbols, the more general the rule. The measure used to

quantify this is called specificity. The specificity of a classifier is the number of non # symbols
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in the antecedent. If a classifier’s antecedent consists of all # characters then the specificity

is zero, if there are no # characters in the antecedent then the specificity is equal to the

antecedent’s string length.

The strength portion of the classifier gives a measure of the rule’s past performance in the

environment in which it is learning. That is, the higher a classifier’s strength, then the better

it has performed and the more likely it is to be used when the condition matches an

environmental message and  reproduce when the GA is applied. The strength values are

relative; therefore, a range limit is set.

  

The messages, generated either from the environment or from the action of other classifiers,

match the condition part of the classifier rule. Therefore, an action is a type of message, with

the consequence of an action being the modification of the environment or attempted matching

with other classifiers. This type of message posting system is also sometimes known as a

Blackboard System (Nii 1986).

Those classifier systems in which classifiers only match messages from the environment and

whose generated actions only modify the environment are called single-layer learning

systems.

# Apportionment of Credit Algorithm – the Bucket Brigade

The apportionment of credit algorithm deals with the modifications in strengths of classifiers

as the classifier system learns. In a classic classifier system, the bucket brigade algorithm

(Holland 1986) serves this purpose. In the bucket brigade, strength modifications occur via

three interrelated mechanisms:

   Auction

   Reinforcement & punishment

   Taxation

In operation the classifier system receives messages from the environment or from the action

of other classifiers. All the classifiers that match one (or more) of the messages compete, by
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submitting a bid, in an auction to determine victorious classifiers that will either directly effect

the environment or have the right to perform their actions that might be able to activate other

classifiers. The victorious classifiers will be directly or indirectly ‘beneficial’ or ‘detrimental’

to the environment. With this feedback, the apportionment of credit algorithm appropriately

uses reinforcement and punishment to increase or decrease the strengths of the victorious

classifiers. Finally, taxation is levied on each classifier per iteration and on each classifier that

submits a bid during an auction (so that inactive classifiers gradually get weeded out). 

An auction is performed among all the classifiers which have an antecedent that matches at

least one of the messages. With the matching classifier pool determined, the auction

commences. Each classifier participating in the auction submits a bid, which is a function of

the classifier’s strength and specificity. Only the bid of the victorious classifiers is paid, so

only the victorious classifiers have their strengths decreased by the amount of their winning

bids. The bid of classifier i at iteration t, Bi(t), is calculated as:

                                                     (2.18)B t C bid bid specificity S ti bid i( ) * ( * ) * ( )= +1 2

where

Cbid is a classifier bid coefficient that determines what proportion of a classifier’s

strength will be bid and possibly lost on a single step.

bid1 , bid2 are bid coefficients associated with a classifier’s specificity.

specificity is the number of non # symbols in the antecedent of classifier i.

Si(t) is the strength of classifier i at step t.

The strength Si(t+1) of a classifier i at the end of iteration t is:

                                                                    (2.19)S t S t B t T t R ti i i i i( ) ( ) ( ) ( ) ( )+ = − − +1

where

Si(t) is the strength of classifier i at beginning of iteration t.

Bi(t) is the classifier’s bid during iteration t (as defined by equation 2.18). only paid if

victorious.

Ri(t) is the reward given by the activated classifiers or reward from the environment.
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Ti(t) represents the taxes paid by the classifier i. The amount of taxes can simply be

proportional to the classifier’s strength. Therefore,  Ti(t) = Ctax * Si(t) , where Ctax  is a

tax coefficient.

Classifier i only makes a bid payment if victorious in the auction. The reward factor, Ri(t), is

only non-zero if the classifier has won the auction and was able to activate other classifiers

or affect the environment on the previous iteration. The reward for the action at iteration t will

not be applied until iteration t+1. 

Taxation occurs to prevent the classifier population from being cluttered with artificially high

strength classifiers of little or no utility. There are two types of taxes: life tax and bid tax. The

life tax is a fixed rate tax applied to every classifier on every iteration. This is done to reduce

the strength of classifiers that rarely or never are matched and therefore provide little or no

utility. These classifiers would otherwise survive and hinder the functioning of the genetic

algorithm. The bid tax is a fixed rate tax that is applied to each classifier that bids during the

iteration. One reason for a bid tax is to penalize overly general classifiers, i.e., classifiers that

bid on every step but perhaps seldom win because they have a low specificity which leads to

low bids and so a low chance of winning the auction.

 

As will be discussed later, new classifiers are inserted into the population at the average

strength of their parent, thus the tax rate must be set to ensure that inactive classifiers are

degraded sufficiently before the application of the genetic algorithm. If this is not done,

relatively inactive classifiers can retain an unrealistically high level of strength and ultimately

reach reproduction disproportionately, thereby cluttering future populations with large

numbers of overrated inactive classifiers. 

With all the apportionment of credit mechanisms defined, the complete strength equation is

shown below:

                        (2.20)S t S t C S t B t R t C S ti i lifetax i i i bidtax i( ) ( ) * ( ) ( ) ( ) * ( )+ = − − + −1

Recall that,
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Bi(t) is only paid if classifier i wins the auction.

Ri(t) will only be non-zero if classifier i won the auction and was able to activate

other classifiers or effect the environment on iteration t-1.

Cbidtax*Si(t) is only paid if classifier i bids in the auction (irrespective of whether i wins the

auction or not).

Clifetax is the life tax coefficient

Cbidtax is the bid tax coefficient

# Genetic Algorithms

Genetic algorithms (GAs), which were introduced by Holland (1975), are used as a classifier

discovery mechanism that generates new classifiers which ultimately may replace existing

poorer performing classifiers if the newly discovered classifiers prove to be better ones.

Discussion of GAs is provided in the next section.

2.6.2 Genetic Algorithms

A genetic algorithm (GA) is a stochastic search algorithm based on the mechanics of natural

selection (Darwin 1897) and population genetics (Mettler et al. 1988). Genetic algorithms, as

Goldberg (1989a) states and demonstrates, are theoretically and empirically proven to provide

robust search in complex spaces.

How does a genetic algorithm work and what makes it different from other search methods? First

of all a genetic algorithm does not work with a single object in the search space. It works with

an entire population of different objects. The individuals in the population are assigned a fitness

value. This value is an indication of how good a solution a certain individual is. Fitness is

calculated by an objective evaluation function. This evaluation function is the only domain-

specific part of the genetic search. The genetic search process itself is not guided by domain-

specific knowledge, so it is almost universally applicable, especially in domains where very little

is known about what is being searched for. 

Using the  population of the current generation and the fitness of its members, the next generation

is created. This operates a fashion that is analogous to natural evolution: the best performing
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individuals have the biggest chance to produce offspring. Offspring are like their parents, but not

always precisely like them. Some of the newly made individuals eventually replace  older less-fit

ones. By using this approach,  a large part of a search space can be randomly covered in a

relatively short period of time. 

Each individual in a GA population is encoded as a set of genes in chromosomes. In the simplest

form of the GA, bit strings play the role of chromosomes, with individual bits playing the role

of genes. For many applications, it is more natural to use an alphabet of many characters, integer

or floating-point numbers, to encode chromosomes. Goldberg’s argument (Goldberg 1989b)

suggests that a GA should exhibit poorer performance with multiple-character encoding than with

binary encoding. However, this has been questioned by Antonisse (1989). Several empirical

comparisons between binary encoding and multiple-character or real-valued encoding have

shown better performance for the latter (Janikow & Michalewicz 1991, Wright 1991). But the

performance depends very much on the problem and the details of the GA being used, and at

present there are no rigorous guidelines for predicting which encoding will work best. In

Holland’s classifier system, rules are represented by bit strings consisting of zeroes, ones and

wildcards, so the GA operates on the bit strings.

There are three basic actions in the genetic algorithm: selection, creation of a new individual from

parents and the replacement of older, poorly performing individuals. 

Selection of individuals for procreation is the first step. A common selection method in GAs is

fitness-proportionate selection, in which the number of times an individual is expected to

reproduce is equal to its fitness divided by the average of fitnesses in the population (Mitchell

1996). Two commonly used methods of implementing fitness-proportionate selection are:

roulette-wheel selection (Goldberg 1989a) and rank-based selection (Baker 1985). In roulette-

wheel selection every individual is assigned a certain probability which is proportional to its

fitness. The probabilities of all individuals should add up to one. Candidates for procreation are

then selected according to these probabilities. It get its name, because it is somewhat like

spinning a roulette wheel. In rank-based selection individuals are ordered according to their

fitness. Individuals are then assigned fixed probabilities according to their rank, that is, their

position in the list. Candidates are again selected with these probabilities. The difference between
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rank-based selection and roulette-wheel selection is not very great. When using roulette-wheel

selection, one should be careful that the ratio between the highest and lowest probability should

not be too great. Otherwise certain individuals will very quickly start to dominate the population.

Although rank-based selection has to sort all the individuals first, it is much easier to control the

different probabilities of the individuals in the population. In addition, ranking avoids giving the

far largest share of offspring to a small group of highly fit individuals, and thus reduces the

selection pressure when the fitness variance is high. It also keeps up selection pressure when the

fitness variance is low: the ratio of probabilities of individuals ranked i and i+1 will be the same

whether their absolute fitness differences are high or low. Tournament selection  (Goldberg &

Deb 1991) is another commonly used method that does not require the calculation of statistical

probability over the entire population. Two individuals are chosen at random from the population.

A random number r is then chosen between 0 and 1. If r < k (where k is a parameter, for example

0.75), the fitter of the two individuals is selected to be a parent; otherwise the less fit individual

is selected. The two are then returned to the original population and can be selected again.

Technical comparisons of different selection methods are provided in Goldberg and Deb (1991),

Back and Hoffmeister (1991), de la Maza and Tidor (1993), and Hancock (1994). However, as

is the case for encodings, at present there are no rigorous guidelines on which methods should

be used for which problems. In fact, they often have similar properties, and therefore the selection

method is not critical to the success of the work. In Holland’s classic classifier system, the

selection process is performed using roulette-wheel selection, where each classifier’s strength

value is used as its fitness.

The next step that happens in the operation of the genetic algorithm is the creation of new

individuals from the selected parents. This is usually done by three techniques: crossover,

mutation and inversion. In the research presented in this thesis, inversion is not used. Crossover

is the mixing of two parents. The chromosomes of the parents must be the same length. A random

point (between two genes) in one of the parents is chosen. For the bit-string chromosome

representation shown in Figure 2.12, the two children are created by joining the genes before the

cut point of the one parent and the genes after the cut point of the other parent.
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   1 0 0     1 0 1 1 0

   1 1 1     0 0 1 0 1

   1 0 0     0 0 1 0 1

   1 1 1     1 0 1 1 0

Parent 1

Parent 2

Child 1

Child 2

Figure 2.12.  Crossover (bit-string
chromosome)

Mutation is a very simple operation. According to Goldberg (1989a), mutation is the occasional

(with small probability) random alteration of a string position. Its purpose is to introduce new

solutions into the population, which were not present at the outset or were lost during the search.

For a bit-string chromosome representation, mutation simply means randomly changing a symbol

value of 0, 1, and # to another value from the same set. 

Crossover and mutation are only used with a certain probability, and are thus  not  used with

every child: sometimes a child is just a copy of one of its parents.

The last step of the genetic algorithm is the replacement of old, poorly performing individuals.

Supposing that we work with a fixed population size, it is necessary to replace old individuals

in order to accommodate the new ones. The replacement method chosen in the classic classifier

systems was called the crowding method by De Jong (1975). Crowding consists of finding a

weak individual that is very similar to the newborn child as the candidate for replacement. In a

classifier system, new classifiers are inserted into the population at the average strength of their

parents. The purpose of the crowding method is for the genetic algorithm to optimize not only

the fitness of the chromosomes but also their diversity. Goldberg and Richardson (1987)

accomplished a similar result using an explicit “fitness sharing” function: each individual’s

fitness was decreased by the presence of other population members, where the amount of

decrease due to each other population member was an explicit increasing function of the

similarity between the two individuals. Thus, individuals that were similar to many other

individuals were punished, and individuals that were different were rewarded. Goldberg and

Richardson showed that in some cases this could induce appropriate “speciation”, allowing the

population members to converge towards several peaks in the fitness landscape, rather than all
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converge to the same peak. There are other ways to promote diversity, and the reader can further

investigate them in Deb and Goldberg (1989), Eshelman (1991), and Hillis (1992).

For the various parameters associated with a genetic algorithm, such as population size, crossover

probability, mutation probability, there is a great deal of discussion in the literature concerning

parameter settings and approaches to parameter adaptation. There are no conclusive results on

what is best; most people use what has worked well in previously reported cases (Mitchell 1996).

De Jong (1975) performed an early systematic study of how varying parameters affected the

GA’s on-line search performance on a small suite of test functions. De Jong’s experiments

indicated that the best population size was 50-100 individuals, the best crossover probability was

around 0.6, and the best mutation rate was 0.001. These settings became widely used in the GA

community (Mitchell 1996), even though it was not clear how well the GA would perform with

these settings on problems outside De Jong’s test suite. Grefenstette (1986) conducted

experiments that used the GA as an optimization procedure to optimize the parameters for

another GA. In Grefensette’s experiments, the “meta-level GA” evolved a population of 50 GA

parameter sets for the problems in De Jong’s test suite. Each individual encoded six GA

parameters, including population size, crossover probability, mutation probability, etc.

Grefensette’s experiments showed that the best population size was 30, the best crossover

probability was 0.95, and the best mutation rate was 0.01. These parameters gave a small but

significant improvement in on-line performance over De Jong’s settings. Schaffer, Caruana,

Eshelman, and Das (1989) spent over a year  systematically testing a wide range of parameter

combinations. They found that the best settings for population size, crossover probability, and

mutation probability were independent of the problem in their test suite. These settings were

similar to those found by Grefenstette: population size 20–30, crossover probability 0.75-0.95,

and mutation probability 0.005-0.01. Compared with other studies that have argued for larger

population sizes (e.g., Goldberg 1989c), De Jong, Grefenstette, and Schaffer et al. demonstrated

that a very small population size was better. The setting of population size in classifier systems

has traditionally followed Goldberg’s principle “more is better”. For example, when Holme’s

(1996) EpiCS was applied for investigation of epidemiologic surveillance data, the population

size was fixed at 1000.
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Although De Jong, Grefenstette, and Schaffer et al found that a particular setting of parameters

worked best for on-line performance on their test suites, it seems unlikely that any general

principles about parameter settings can be formulated a priori, in view of the variety of problem

types, encodings, and performance criteria that are possible in different applications. Moreover,

the optimal population size, crossover probability, and mutation probability likely change over

the course of a single run. Several researchers  (Booker 1987; Davis 1989; Fogarty 1989; Davis

1991) have expressed the belief that the most promising approach is to have the parameter values

adapt in real time to the ongoing search. 

2.6.3 Overview of Classifier Systems

Classifier systems have been in existence for more than twenty years. While there was

considerable research in the 1980s, the field began to wane as the decade closed. In the early to

mid 1990s, classifier systems seemed too complicated to be studied, with few successful

applications reported. But, during the last several years, new models have been developed and

new applications have been presented which have caused a resurgence of this area.  

The first classifier system was Cognitive System One (CS-1) by Holland and Reitman (1978).

CS-1 attempted to traverse a simulated linear maze with external payoff only at the maze ends,

so that the correct step-direction had to be learned at each interior point. The system’s success

was the first example of the generation of rules appropriate to a task under the genetic algorithm,

and the effective allocation of credit under conditions of infrequent payoff. Although CS-1

learned under infrequent payoff, it did not do so using the bucket brigade of today’s classifier

systems. Instead  CS-1 apportioned credit to activated classifiers using an epochal algorithm. The

epochal algorithm kept track of fairly extensive activation statistics and paid classifiers active

since the last payoff event when a reward was next received.

Smith (1980) stripped the classifier system of its apportionment of credit system in his study of

a system called LS-1 in Waterman’s (1970) poker playing task. By so doing, Smith sidestepped

many of the knotty questions of credit assignment by requiring genetic evaluation of entire rule

sets. This approach contrasts starkly with that of CS-1 where a single rule is taken as the

corpuscle of genetic manipulation.
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Goldberg (1983) applied classifier systems to two control problems: the centering of a Newtonian

object in a one-dimensional space, and the generation of a rule set that would cover both normal

and exceptional operating conditions on a gas pipeline. Although Goldberg’s work was the first

application of a classifier system to a physical system, his work did not consider infrequent

reward.

Wilson’s (1985) Animat system was the first to demonstrate the bucket brigade, though a

simplified one, under infrequent payoff conditions. The simplification was to omit the posting

and matching of messages, which means that classifiers only match messages from the

environment and actions generated from classifiers only modify the environment. Wilson

introduced two other procedures that aided rapid learning in this food-finding task. First, when

the system could not match an environmental input, a matching classifier was simply created

using an action chosen randomly or by a form of look-ahead. Second, each classifier stored an

estimate of the average number of steps between its activation and the finding of food. The

estimate was combined with strength to form the classifier’s bid. This encouraged the formation

of paths that were both remunerative and short. Later, Wilson developed other important models

such as BOOLE (Wilson 1987), NEWBOOLE (Bonelli et al. 1990), and ZCS (Wilson 1994)

which finally lead to XCS (Wilson 1995). XCS keeps all the main ideas of Holland’s model while

it introduces some fundamental changes. First, in XCS the evaluation of classifiers is based on

the accuracy of a classifier’s prediction but not on the classifier’s strength as in Holland’s model.

Thus, in XCS, a classifier is considered “useful” if it conveys accurate information about the

problem. Second, in XCS a niche genetic algorithm is used. Thus, the discovery component GA

does not act on the whole population (as usually happened in Holland’s model) but on subsets

of classifiers on each invocation. Since XCS is a single-layer classifier system without involving

complex internal operations such as message posting and matching, it is more easily studied and

analyzed compared with the classic classifier system.

Robertson and Riolo (1988) investigated letter sequence prediction and produced the first

evidence of the generation, and the use by the bucket brigade, of internal messages. The

prediction task required internal messages since performance depended partially on memory of

letters seen earlier.   
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Grefensette (1988) made the first experimental comparison between the bucket brigade and a

simplified version of Holland and Reitman’s epochal credit allocation scheme. In the latter,

termed the profit sharing plan (PSP), Grefensette argued that classifier strengths under PSP more

accurately predict final rewards than those under the bucket brigade, and his experimental results

with a two-dimensional state space showed superior performance for PSP.

Holmes’s (1996) EpiCS was developed from NEWBOOLE to meet the demands of

epidemiologic data. EpiCS’s distinctive features include: (i) techniques for controlling over- and

under-generalization of data; (ii) the use of differential negative reinforcement of false positive

and false negative errors in classification, and (iii) a methodology for determining risk as a

measure of classification. All of these features have led to the successful use of EpiCS in

knowledge discovery applications to actual clinical databases of various sizes and levels of

complexity. 

Stolzmann’s (2000) anticipatory classifier system (ACS) differs greatly from other classifier

system models in that ACS learns not only how to perform a certain task, but also build an

internal model of the dynamics of the task. In ACS, classifiers are not simple condition-action

rules but are extended by an effect part. The effect part of a classifier is used to anticipate the

environmental state which results from the execution of the classifier action. Besides the genetic

algorithm, an Anticipatory Learning Process (ALP) is used for rule discovery which directly

learns from changes in the environment. ACS forms explicit condition-action-effect classifiers

with a generalization capability in the classifier conditions. This leads to an internal model of the

environment. 

    

From the system applications point of view, most of the reported results fall into three main

areas:

# Using Classifier Systems to Control Simulated Creatures. 

This is the research area where  classifier systems have been applied most. They have been

reported in (Booker 1982; Wilson 1985; Wilson 1987; Dorigo & Sirtori 1991; Roberts 1993;

Dorigo & Colombetti 1998).
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# Using Classifier Systems in Computational Economics. 

Classifier systems have been used to model adaptive agents in artificial stock markets (Arthur

et al. 1996; Mitlohner1996; Lebaron et al. 2000). Bull (1999) applied a classifier system to

a simulated Continuous Double-Auction (CDA) market. Schulenburg and Ross (1999)

employed classifier systems to model the behaviour of agents trading risk free bonds and risky

assets in a stock market environment. 

# Using Classifier Systems for Knowledge Discovery. 

In this area, classifier systems are used to extract information about interesting phenomena

described by multidimensional data. Holmes (1996) applied his EpiCS to complete

classification tasks from different medical domains. de Boer (1994) applied a classifier system

to the Mushrooms Database (UCI 1998), showing the classifier system can have a good

generalization ability. Saxon and Barry (2000) applied XCS to the Monks Problem (UCI

1998), demonstrating that XCS is able to produce a classification performance which exceeds

the performance of most current machine learning techniques, such as neural networks and

decision trees. Wilson (2000) applied XCS to the Wisconsin Breast Cancer Database (UCI

1998) and found that it performed as well as state-of-the-art machine learning algorithms.

According to Lanzi et al. (2000), the recent results and the amount of ongoing work in

utilizing classifier systems for knowledge discovery suggest that knowledge discovery

applications may represent an important breakthrough for classifier systems, taking them well

beyond the Evolutionary Computation community. 

2.6.4 Limitations of Classifier Systems

Although quite a few researchers have invested effort in developing models and methods in the

field of classifier systems, the current models and methods have shared some major limitations:

interpretation difficulty, initial classifier chain generation difficulty, and initial system parameter

setting difficulty. 

A major drawback with classifier system concerns the interpretation difficulty. The string rule

representation and the large number of rules necessary to solve any realistic problem in a

classifier system impedes a straightforward and comprehensive interpretation. de Boer (1994)

applied a classifier system to the Mushrooms Database (UCI 1998), showing that 200 classifiers
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were necessary in order to obtain 90% predictive accuracy on test sets. No interpretation of the

learned classifier system was undertaken, as the number of relevant classifiers was too large.

Holmes (1996) applied EpiCS in diagnostic classification data sets. Although the experimental

results demonstrated that EpiCS with 1000 classifiers achieved better classification accuracy than

a traditional multivariate statistical analysis, the question “Can a EpiCS discover features in

clinical data that point to possible associations with a specific outcome?” still remained. Wilson

(2000) applied his XCS to the Wisconsin Breast Cancer Database (UCI 1998) showing that XCS

performed as well as state-of-the art machine learning algorithms with the size of classifier

population at 6400. Only a small fraction of the evolved population (the 27 most fit classifiers)

were directly interpretable. Therefore, Wilson argued that “It would be desirable to find

algorithms of extracting all the classifiers’ implications as rules of thumb and in other

representations”.

The bucket brigade algorithm, as defined by Holland (1986), was developed to solve the credit

assignment problem in classifier systems, and has experienced limited success to date. Credit

assignment (Minsky 1963) deals with the problem of deciding, when many parts of a system are

active over a period of time (or even at every time step), which of those parts that are active at

some step t should contribute to achieving some desired outcome at step t+n, for n>0. The bucket

brigade has the virtue of distributing credit to large numbers of sequentially acting classifiers by

means of strictly local transactions among them. Unfortunately, as Wilson and Goldberg (1989)

have suggested, the technique has a primary weakness: initial bucket brigade chains are hard to

generate. In the decades since the classifier system was invented, there have been few classifier

systems in which chains of sequentially activated classifiers have actually been formed (Wilson

1985; Robertson & Riolo 1988; Grefenstette 1988). Of these three classifier systems, only

Robertson and Riolo’s used internal messages. The three systems learned under conditions of

infrequent payoff in which the generation of stage-setting classifiers was required. The discovery

of such classifiers remains a difficult problem.

The determination of the best system parameters is an area that classifier system research has not

addressed completely (Richards 1995). de Boer’s experiments (de Boer 1994) showed that these

initial parameter settings can greatly influence the learning capabilities of the classifier system.

Binary string representations have made the system initialisation more difficult. When learning
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is occurring, some form of an initial population must be created. In such a case, if a classifier

system starts with a randomly generated initial population, then many population parameters and

message parameters must be set. These include the word length of the messages, the number of

conditions in the antecedent, the word length for each condition and action, and the probability

of selecting a wildcard (# ) in the randomly generated population. 

In summary, although much effort has been devoted to the development of working classifier

systems over the past years, the current classifier systems have major weaknesses. In Chapter 6,

a novel market-based rule learning (MBRL) system is proposed that is aimed at addressing these

limitations.

2.7 Summary
This chapter has provided background material for the remainder of the thesis. The statistical

methods used in the experiments of the thesis have been described. A brief introduction of feed-

forward neural networks, fuzzy systems, and fuzzy neural networks have been given, and the

current difficulty of constructing membership functions in fuzzy systems has been addressed. An

overview of feature selection and rule extraction methods has been described, followed by

demonstrations of some of the existing feature selection and rule extraction methods. In terms

of feature selection via neural networks, the difficulty of finding a proper pruning threshold in

pruning algorithms has been discussed. Finally, an introduction to classifier systems and an in-

depth review of related work in classifier systems, including genetic algorithms have been

provided. The  major limitations of current classifier systems have been outlined.        

The next chapter will provide a description of the problem domains used in the experiments of

this research.
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Chapter 3 The Problem Domains  

3.1 Introduction
There are six data sets used in the experiments of this research. In this chapter, the descriptions

of these six data sets are provided. Section 3.2 – 3.7 give the detailed descriptions and

background information of the Iris Classification Data (Fisher 1936), the Pima Indians Diabetes

Data (UCI 1998), the Wine Recognition Data (UCI 1998), the Golf Course Problem (Purvis et

al. 1996), the Cook Islands Sea Cucumber Habitat Data (Drumm et al. 1999), and the New

Zealand Asthma Incidence Data (Hales et al. 1998a) respectively. Section 3.8 describes how data

sets were prepared for various techniques such as neural network training, rule extraction, and

rule refinement. 

All six selected problem domains are supervised learning tasks with output class information

provided in the data sets. The Iris Classification Data, the Pima Indians Diabetes Data, and the

Wine Recognition Data were selected because they have been widely analysed in the literature

(too much to list here), so that comparisons can be easily made among different techniques. These

three data sets can be obtained via ftp from the University of California - Irvine machine learning

data repository (UCI 1998). The Golf Course Problem is a spatial problem. The experimental

results conducted based on the Golf Course Problem can provide  evidence of how the techniques

under investigation perform for  spatial data sets. The Cook Islands Sea Cucumber Habitat Data,

and the New Zealand Asthma Incidence Data represent practical applications from the areas of

ecology and medicine. In such practical applications, the data sets normally contain a significant

level of noise, and are used to test if the relevant techniques can handle the data with noise. In

addition, the experimental results based these on two latter data sets can not only provide

evidence for the performance of relevant techniques, but also indicate possible useful solutions

for human decision-makers. 

3.2 Iris Classification Data 

In the Iris data set, there are three classes of Iris flowers to be discriminated using four real-

valued features that represent physical characteristics of the flowers. The Iris data set contains

150 samples, with 50 samples for each of the classes: Iris setosa, Iris versicolor, and Iris
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virginica. Each sample is described using four numeric attributes: Sepal-length, Sepal-width,

Petal-length, and Petal-width as shown in Table 3.1.

For the experiments presented in the thesis, all 150 samples were used. The class information is

shown in Table 3.2.

Table 3.1. Attribute descriptions for the Iris data Set

Attribute Description Variable Type Range

I1 Sepal-length Real 4.3 - 7.9

I2 Sepal-width Real 2.0 - 4.4

I3 Petal-length Real 1.0 - 6.9

I4 Petal-width Real 0.1 - 2.5

Table 3.2. Class information for the Iris data set 

Class Number of samples

Iris Setosa 50

Iris Versicolor 50

Iris Virginica 50

3.3 Pima Indians Diabetes Data
The Pima Indians Diabetes database consists of 768 samples taken from patients who may show

signs of diabetes. Each sample is described using 8 continuous-valued attributes shown in Table

3.3. The class index represents either a positive or negative test for diabetes.

For the experiments presented in later chapters, 768 samples – 268 samples “tested positive for

diabetes” and the remaining 500 samples“tested negative for diabetes” – were used. The class

information is shown in Table 3.4.
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Table 3.3. Attribute descriptions for the Pima Indians Diabetes data set

Attribute Description Variable Type Range

I1 Number of times pregnant Integer 0 - 17

I2 Plasma glucose concentration in a 2

hour oral glucose tolerance test

Real 0 - 199

I3 Diastolic blood pressure Real 0 - 122

I4 Triceps skin fold thickness Real 0 - 99

I5 2 hour serum insulin Real 0 - 846

I6 Body mass index Real 0 - 67.1

I7 Diabetes pedigree function Real 0.078 - 2.42

I8 Age Integer 21 - 81

Table 3.4. Class information for the Pima Indians Diabetes data set 

Class Number of samples

Tested positive for diabetes 268

Tested negative for diabetes 500

3.4 Wine Recognition Data
The Wine Recognition Data consists of 178 samples, each of which is represented by 13

chemical, attributes shown in Table 3.5. All 13 attributes are real-valued. The 178 samples are

classified into one of the three types of wines, which are represented as class 0, class 1 and class

2 in Table 3.6. We used all 178 samples for experiments.
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Table 3.5. Attribute description for the Wine Recognition data set

Attribute Description Variable Type Range

I1 Alcohol Real 11.03 - 14.83

I2 Malic acid Real 0.74 - 5.8

I3 Ash Real 1.36 - 3.23

I4 Alkalinity of ash Real 10.6 - 30

I5 Magnesium Integer 70 - 162

I6 Total phenols Real 0.98 - 3.88

I7 Flavanoids Real 0.34 - 5.06

I8 Nonflavanoid phenols Real 0.13 - 0.66

I9 Proanthocyanins Real 0.41 - 3.56

I10 Color intensity Real 1.28 - 13

I11 Hue Real 0.48 - 1.71

I12 OD280/OD315 of diluted wines Real 1.27 - 4

I13 Proline Integer 278 - 1680

Table 3.6. Class information for the Wine Recognition data set 

Class Number of samples

Class 0 59

Class 1 71

Class 2 48

3.5 Golf Course Problem
The Golf Course Problem is based on the problem of determining suitable sites for public golf

courses in the South Island of New Zealand. For this problem it was assumed that a suitable

location could be determined from the observed data of mean altitude, mean annual rainfall,

mean summer temperature, and the distance to the nearest of four principle urban centres of the

South Island as shown in Table 3.7.
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Figure 3.1. Solution set for golf
course suitability (produced by human
expert)

Table 3.7. Attribute descriptions for the Golf Course Problem

Attribute Description Variable Type Range

I1 mean altitude Real 1 - 3203

I2 mean annual rainfall Real 500 - 3000

I3 mean summer temperature Real 10.5 - 16.1

I4 distance to the nearest of four

principle urban centers

Real 0 - 261

Each of the 153,036 1 km2 blocks of the South Island was taken to be a candidate location for a

golf course, and for each block, values for the four attributes were determined and placed in a

data set. In order to provide an evaluation mechanism, an artificially “correct” classification was

determined based on a set of plausible rules. A description of this rule set can be found in Purvis

et al. (1996). The output class of golf course suitability was taken to have one of five possible

values, ranging from 0 (very unsuitable) to 4 (very suitable), and a map of the “correct” solution

set is shown in Figure 3.1. Note that because of the rigid boundaries of the rules, the solution set

is only piece-wise differentiable, and therefore neural network analysis, which is based on

continuous differentiable functions, may show inaccuracies near these boundaries.
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We randomly selected 1525 samples (~ 1% of the total) for experiments. The class

information is shown in Table 3.8.

Table 3.8. Class information for the Golf Course Problem

Class Number of samples

Class 0 (very unsuitable) 152

Class 1 (unsuitable) 357

Class 2 (neutral) 404

Class 3 (suitable) 429

Class 4 (very suitable) 183

3.6 Cook Islands Sea Cucumber Habitat Data
This data set was used for predicting the habitat preferences of one species of tropical sea

cucumber, Holothuria leucospilota, in the reef-top ecosystem of Rarotonga, Cook Islands

(Drumm et al. 1999). A total of 128 sites were sampled for environmental and biological

variables, using 2m × 50m (100m2) strip transects. This size sample unit was selected to

account for the patchy distribution of the animals, and the number of H. leucospilota

encountered along each transect was recorded. In addition to the species’ abundance, ten

environmental variables that were expected to have an influence on the habitat preference of

the sea cucumber were recorded at each of the 128 locations (Table 3.9). These included the

exposure of the site (windward or leeward side of the island), and the following microhabitat

variables: %sand, %rubble, %consolidated rubble, %boulder, %rock/pavement, %live coral,

%dead coral, %mud/silt, and %gravel. These microhabitat variables were estimated as a

percentage of the total 100m2 area sampled.  
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Table 3.9. The related attributes of the habitat preference of the Sea Cucumber

Attribute Description Variable Type Range

I1 

I2 

I3 

I4 

I5 

I6 

I7 

I8 

I9 

I10 

Exposure (Windward or Leeward)

%sand

%rubble

%consolidated rubble

%boulder

%rock/pavement

%live coral

%dead coral

%mud/silt

%gravel

Discrete(nominal) 

Real

Real

Real

Real

Real

Real

Real

Real

Real

0, 1

0 - 100%

0 - 100%

0 - 100%

0 - 100%

0 - 100%

0 - 100%

0 - 100%

0 - 100%

0 - 100%

All observed sites were divided into two distinct classes according to the frequency of

animals at each location within the 100m2 sample unit. The habitat condition class considered

to be “average” was characterized by having < 1 animal/m2, and the habitat condition class

considered to be “good” was attributed to sites with > 1 animal/m2. ‘Good’ condition sites

were given a target value of 1, while ‘average’ ones had a target value  of 0.  The details are

shown in Table 3.10. 

Table 3.10. Site condition class ranges for Cook Islands Sea cucumber Habitat data 

Class Number of sites Animal frequency range

Class 0 (average condition class) 104 0 - 93

Class 1 (good condition class) 24 114 - 918

3.7 New Zealand Asthma Incidence Data
New Zealand Asthma Incidence Data was based on an investigation of the patterns of self-

reported asthma symptoms in relation to demographic and environmental factors in New

Zealand (Hales et al. 1998a). The data consists of 25,000 adults aged 20 – 44 who responded

to a postal questionnaire. Each record was classified to be either “asthma positive”, or

“asthma negative”. “asthma positive” was defined according to the proportion of subjects who

reported one or more of the following symptoms: woken with shortness of breath in the past
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12 months, an attack of asthma in the past 12 months, or currently taking asthma medication. 

In this research, we focus on the 5103 records associated with people aged 20 to 25. From

these 5103 records, a set of 1000 records was randomly selected for experiments: 500 records

reporting “asthma positive” and 500 records reporting “asthma negative”. For each record, 9

environmental and demographic attributes are given as shown in Table 3.11; 4 attributes

(ethnicity, land use, social deprivation index, and sex) have discrete values, and the rest have

continuous values. The class information is shown in Table 2.12.

Table 3.11. The related attributes of the New Zealand Asthma Incidence data set

Attribute Description Variable Type Range

I1 Ethnicity Discrete (nominal) (0: European; 1: Maori; 2: Pacific

Islander; 3: Chinese; 4: Others)

I2 Humidity Real 65.4% - 98.1%

I3 Land use Discrete(nominal) 52 classes

I4 Mean temperature Real 5 - 16 degree

I5 Social deprivation

index

Discrete(ordinal) 1 - 10

I6 Rainfall Real 30.9mm/month - 678.8 mm/month

I7 Sex Discrete(nominal) (0: Male; 1: Female)

I8 Sunshine Real 12 hours/day - 15.4 hours/day

I9 Wind speed Real 5.5 m/s - 24.9 m/s

Table 3.12. Class information for the New Zealand Asthma Incidence data set 

Class Number of samples

Asthma positive 500

Asthma negative 500
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3.8 Data Preparation
As described earlier in Chapter 2, predictive accuracy, comprehensibility, and fidelity in the

experiments of the thesis are evaluated by cross-validation, and experimental results are given

on the mean calculated based on the 10-fold cross validation for all data sets. Therefore, for

each selected data sets, ten cross-validation trials were created. For each cross-validation trial

the relative proportions of the training set and testing set were 9/10 and 1/10, respectively.

For example, for the Iris data set, each cross-validation trial consists of two subsets: 135

samples for training, and 15 samples for testing. It is important to acknowledge that, for the

Golf Course Problem, a cross validation procedure may not produce truly independent sets of

training and test samples since the 1525 total samples were randomly selected without

considering the spatial correlation of the sample blocks. As the affect of this correlation, the

prediction of the various learning techniques on the test sets might be overestimated.      

As also described in Chapter 2, the training phase of neural network models is stopped when

the measured error on a training validation has passed through a minimum and has begun to

increase. Therefore, a training validation set was needed for this purpose. A training

validation set can be just a subset of the training set. Recall that for each cross-validation trial,

the relative proportions of the training set and testing set were 9/10 and 1/10, respectively.

For those cases when a training validation set was used, each cross-validation trial employed

a partitioning of the data according to the following relative proportions: 6/10 for the training

set, 3/10 for the training validation set, and 1/10 for the test set. Note that training validation

sets were only used for monitoring neural network and fuzzy neural network training in

experiments conducted in Chapter 4 and Chapter 5. For other experiments associated with

rule extraction and rule refinement, training validation sets were not employed. 

Various techniques for feature selection, rule extraction, and rule refinement were employed

for experimenting in this research. The data preparation for these different techniques are

described as follows:
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# Data Preparation for the Techniques Associated with Feed-forward Neural Network

Training. 

The techniques associated with feed-forward neural network training in this research include:

three network pruning mechanisms proposed in Chapter 4, the NeuroLinear rule extraction

approach discussed in Chapter 2 and experimented with in Chapter 8, and the MBRL system

proposed in Chapter 6 and experimented with as a post-processing tool to refine NeuroLinear-

generated rules in Chapter 7 and Chapter 8. 

Before the feed-forward network’s learning process started, the training and test data were

prepared as follows:

• All discrete input attributes and output classes were coded as binary representations. For

example, the sex input attribute in the New Zealand Asthma Incidence data set was coded as

male {1, 0} and female {0, 1}; and the three output attributes 0, 1, and 2 for the Wine

Recognition data set were coded as {1, 0, 0}, {0, 1, 0}, and {0, 0, 1}.

Among six selected data sets, two data sets (Cook Islands Sea Cucumber Habitat Data and

New Zealand Asthma Incidence Data) involve discrete input attributes. Their input

attributes for neural network training are presented in Table 3.13 and Table 3.14,

respectively.
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Table 3.13. Input Attributes of the Cook Islands Sea Cucumber Habitat data for neural

network training

Attribute Description

X1 - X2

X3 

X4

X5

X6

X7 

X8 

X9 

X10 

X11

Exposure (Windward or Leeward)

%sand

%rubble

%consolidated rubble

%boulder

%rock/pavement

%live coral

%dead coral

%mud/silt

%gravel

Table 3.14. Input attributes of the New Zealand Asthma Incidence data for neural network

training

Attribute Description

X1 - X5 Ethnicity

X6 Humidity

X7 - X58 Land use

X59 Mean temperature

X60 - X69 Social deprivation index

X70 Rainfall

X71 - X72 Sex

X73 Sunshine

X74 Wind speed

• All numeric input attributes were linearly normalized between 0 to 1. If the minimum and

maximum values associated with input attribute D are Dmin and Dmax, the formula for

transforming each data value d to normalized d’ is:
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                                                                                                             (3.1)d
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−

The normalization was performed after the training and testing sets were split to ensure

some independence between training and test sets. Therefore, Dmin and Dmax was taken

independently between the training and test sets.

 

For the experiments associated with the MBRL system to refine NeuroLinear-generated rules,

the training and test data sets used had normalized inputs and discrete outputs.

# Data Preparation for the Techniques Associated with Fuzzy Neural Network FuNN. 

The techniques associated with the fuzzy neural network FuNN in this research includes: the

Chi2-based membership selection approach presented in Chapter 4, the ReFuNN fuzzy rule

extraction approach discussed in Chapter 2 and used empirically in Chapter 8, and the MBRL

system prsentedin Chapter 6 and employed experimentally as a post-processing tool to refine

ReFuNN-generated rules in Chapter 7 and Chapter 8. 

Before the fuzzy neural network FuNN started training, the training and test data were

prepared as follows:

• The output attribute was fuzzified, based on the membership functions generated by the

fixed centre-based membership function selection approach.  

• All input attributes were fuzzified, based on the membership functions generated by either

the Chi2-based membership function selection approach or the fixed centre-based

membership function selection approach. 

For the experiments associated with the MBRL system to refine ReFuNN-generated rules, the

training and test data set  formats were of fuzzified inputs and discrete outputs. The fuzzied

inputs were real-valued in the experiments. 
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# Data Preparation for the Chi2 Algorithm, C4.5 Decision Trees, and the Rule Generator

X2R.

For the experiments associated with the Chi2 algorithm and the C4.5 decision tree software,

training and test data sets with original real-valued inputs and discrete outputs were used. For

the experiments in connection with the rule generator X2R, those input data sets having real-

valued attributes were first discretized so that the discrete-valued inputs could then be used in

connection with the Chi2 algorithm.

  

3.9 Summary
This chapter has been devoted to describing six selected data sets that have been used in the

experiments of the thesis. The discussion addressed issues such as why each data set was

selected and how data sets were prepared for the various techniques. 

The next chapter will focus on feature selection techniques, which are critical to the

implementation of data pre-processing for rule extraction.  



Part II
Feature Selection

Part II is devoted to feature selection issues and concerns both statistical and connectionist

methods. Chapters 4 and 5 belong to this part. In Chapter 4, how to achieve feature selection via

neural networks is first presented. Three neural network pruning schemes are then proposed. A

detailed analysis and comparison of experimental results from six data sets are given. Chapter

5 presents Chi2-based spatial data filtering and a Chi2-based membership functions selection

method for fuzzy systems. Both of these applications demonstrate how techniques from separate

approaches can be combined to yield improved results.
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Chapter 4 
Feature Selection and Neural Network Analysis

4.1 Introduction
In this chapter we first discuss how feature selection can be achieved by means of neural

networks. Three neural network pruning schemes are then presented. In order to examine the

performance of the neural network feature selection schemes and compare them with a P2

statistic-based feature selection algorithm, Chi2, six data sets are used  for experiments. The

analysis of these experimental results, particularly in connection with issues concerning the

predictive accuracy, the complexity of representations, feature reduction, computing time, and

the generality of selected features, are also presented in this chapter.

4.2 Feature Selection via Neural Networks
In this section, we examine how feed-forward neural networks select input attributes that are

useful for discriminating output classes in a given set of input patterns. The use of neural

networks as a feature selector was reported by Setiono and Liu (1997a). They used a simple

criterion to remove an attribute based on the accuracy rate of the network, after which the

network is retrained, and the selection process is repeated until no attribute meets the criterion

for removal. The approach proposed in this section is more straightforward. First a three-layer

feed-forward neural network is trained and then pruned while maintaining its performance. At

the end, only those input attributes which have connections to hidden nodes are chosen as

selected features. The network-pruning scheme is the key to the proposed algorithm.

4.2.1 Neural Network Training

The basic structure of the neural network in this work is a standard three-layer feed-forward

neural network, which consists of an input layer, a hidden layer and an output layer. The number

of input nodes corresponds to the dimensionality of the examples of a learning problem, and the

number of output nodes is determined by the number of output classes. The number of hidden

nodes depends on the problem in hand. The hyperbolic tangent function * (x) (equation 2.6 in

Chapter 2) and the logistic function F(x) (equation 2.5 in Chapter 2) are applied in the hidden
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layer and the output layer, respectively, as the activation functions. The typical error function

associated with the neural network is the mean squared error (4.1). 

                                                                                      (4.1)E w v S tpi
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where k is the number of training examples, c is the number of output nodes, Spi is the output of

the network at output node p for training sample Xi, and tpi is the target value at the output node

p for training sample Xi. Given an n-dimensional input example Xi, i 0 {1,2,...,k}, Spi is given

according to the equation
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where n is the number of input nodes, h is the number of hidden nodes, wml is the weight of the

connection from the l-th input node to the m-th hidden node, and vpm is the weight of the

connection from the m-th hidden node to the p-th output node.

When the task of pruning (i.e. reducing the number of connections in) a neural network is

undertaken, it is a common practice to add a penalty term to the error function during training (Ji

et al. 1990; Weigend et al. 1991; Reed 1993). This is used to discourage the weights from taking

large values and encourage small weights to decay rapidly to zero. To achieve this goal, we make

use of the following penalty function (Hinton 1989; Weigend et al. 1988):

                    

  (4.3)P w v
w

w
v

v
w vml

mll

n

m

h
pm

pmp

c

m

h

ml
l

n

m

h

pm
p

c

m

h

( , ) ( ) ( )=
+

+
+

+ +
== == == ==
∑∑ ∑∑ ∑∑ ∑∑ε

β
β

β
β

ε1
1 1

2
2

2
11

2

2
11

2

11

2

11

Where g1 and g2 are small positive weight decay constants and $ is a parameter with a positive

value. Following the discussions of this penalty function and the experimental results on a

number of well known classification problems given in Hassibi & Stork (1993), for all the

experiments reported in this thesis, we used the same values for the parameters involved in the

function P(w,v). These were g1 = 0.1, g2 = 0.0001 and $ = 1. 
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We applied the backpropagation algorithm or BFGS algorithm to update network weights and

minimize the following error function:

                                                                                            (4.4)θ ( , ) ( , ) ( , )w v E w v P w v= +

For the descriptions of these two algorithms, the reader should refer to Section 2.3.1.

In a problem with a large number of attributes, it is frequently the casethat many of the input

attributes are not relevant to the classification of the patterns. Adding the penalty term to the error

function and minimizing the resulting augmented function means that connection weights from

the irrelevant input nodes to the hidden nodes will have smaller magnitudes, and these

connections can be eliminated. The benefits that can be gained by removing these connections

are twofold. First, the feature selection can be achieved by identifying the relevant input

attributes. Second, it is easier to interpret the resulting network for the purposes of rule extraction

when there are fewer connections from the input nodes to the hidden nodes. For example, if the

NeuroLinear technique is applied, a smaller number of rules can be extracted when a neural

network has fewer connections between input layer and hidden layer.

     

4.2.2 Neural Network Pruning

The pruning approach begins with a fully connected network and removes connections that are

deemed to be “redundant” in the network according to the magnitudes of their weights. In the

process, input nodes that are not connected to any hidden nodes and hidden nodes that are not

connected to any input nodes and/or output nodes can be removed from the network. After

pruning, the removed inputs are identified as the features that are irrelevant to the learning

problems. The steps of a pruning algorithm are outlined below. 

Neural network pruning algorithm

1. Pick a fully connected network. Train this network until a predetermined accuracy rate 01

is achieved.

2. Make a choice of 02, a pruning-threshold that is a positive scalar to determine if a weight

can be removed. 

3. For each weight w of the network, if 

                                                         |w|#02, 
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       then remove w.

4. Retrain the network. If the network meets the predetermined accuracy level 01, then go to

step 2. Otherwise, stop and use the previous setting of network weights.

The fully connected network is trained first. Then the accuracy of the network is checked. If the

classification rate of the network meets the prespecified required accuracy 01, then the pruning

process is initiated.  Before the actual pruning and retraining is done, the current network is

saved. Should pruning additional weight(s) and retraining the network fail to give a new set of

weights that meet the prespecified accuracy requirement, the saved network would be considered

as the smallest network for this particular run.

The value of the pruning threshold 02 determines the range of weights to be removed in the

network. As discussed in Chapter 2, most penalty-based pruning algorithms require 02 to be set

manually, which can cause over- or under-removal of the weights of the network. In order to

address this limitation, here we propose three different approaches for the choice of a pruning-

threshold. The suitability of each approach depends on the network complexity, the nature of the

application, the required predictive accuracy of the pruned network and some other factors that

will be explained later. 

# Pruning threshold 02 Selection Approach I: VBS

The first approach is a simple selection technique. It is named Value Based Selection, because it

selects 02, based on the values of weights in the network. It first searches the minimum and

maximum weights according to the absolute values of all weights in the network, then applies

equation (4.5) to obtain 02.

                                                                                    (4.5)η2 = + − ×w w w pmin max min( )

where wmin is the minimum absolute value of the weights, wmax is the maximum absolute value

of the weights, and p is a small positive value between 0 and 1. The value of parameter p reflects

how large the value range of removed weights can be. For example, suppose we have the

following set of weights:

                                  -1.3, 2.32, 1.46, -1.94, 2.81, 2.52 
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The minimum absolute value of the weights wmin equals 1.3. The maximum absolute value of the

weights wmax equals 2.81. If p is set to 0.2, then 

                              02 = 1.3 + (2.81-1.3)* 0.2 = 1.602 

Thus any weights which have their absolute values below or equal to 1.602 are removed, so in

this case, -1.3 and 1.46 are removed.

Although the VBS approach guarantees that at least one weight (|w| = wmin) can be removed for

each run, it works more effectively when all values of the weights in the network are close to

each other. When the penalty term (equation 4.3) is added to the error function (equation 4.1)

during network training, the weights of the connections are prevented from getting larger. At the

same time, small weights are made to decay towards zero. The effectiveness of the VBS approach

works will be seen from the experimental results presented in later sections.

# Pruning threshold 02 Selection Approach II: NBS

The second approach is named Number Based Selection, which means it selects 02 based on the

existing number of weights in the network. 

Assume as given a trained network with a set of all weights W,

                                               W  = {w0, w1, ..., wn-1}

where n is the total number of weights.  

The NBS approach starts by sorting all weights in ascending order of absolute magnitude to form

another set of weights :′W

                                         W w w w wk n
' ' ' ' '{ , ,..., ,..., }∈ −0 1 1

where is the minimum absolute value of the weights, and is the maximum absolutew0
' wn−1

'

value of the weights. For the ordered set of weights , 02 is obtained by computing:W '

                                                                                                                      (4.6)η2 = wLocation
'

                                                                                                             (4.7)Location n p= ×
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where p is a small positive value between 0 and 1. Unlike the parameter p in the VBS approach,

p here determines what percentage of total weights will be removed each time. For example, if

the current total number of weights n = 100 and the value of p = 0.1, then 11% of the total

number of weights {w0, ..., w10} will be removed for this particular run of the pruning process.

The NBS approach overcomes a drawback of the VBS approach: it guarantees a certain

proportion of total weights will be taken out regardless of the value distribution of the weight set.

However, if parameter p is set too large, the VBS approach may not be able to arrive at a

satisfactorily small network, since it always eliminates a significant quantity of weights for each

run, which can make the required training accuracy level difficult to maintain. This is particularly

likely to happen when the number of weights n becomes small after running the retraining and

pruning processes several times. On the other hand, the pruning process can be time-consuming

if the value of p is too small (e.g., if p = 0, only one weight is removed for each run). In short, it

is not straightforward to find a proper p for the VBS approach. This leads to the next approach,

which makes the setting of parameter p automatic instead of manual.        

# Pruning-threshold 02 Selection Approach III:  PBS

The VBS approach requires the user to specify a value of p that is to be used for deciding the

proportion of total weights to be pruned at each run without providing rules to choose this p. The

third approach, named Parameter Based Selection, selects p automatically according to the

existing number of weights in the network. As shown in Figure 4.1, a linear function is used to

establish an appropriate relationship between the parameter p and the existing weights in the

network. It begins with a high value P, e.g. 0.5, for pruning a fully connected network with a total

number of weights N. Then parameter  p is updated when the total number of existing weights

n changes.
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Figure 4.1. The relationship between
parameter p and the number of existing weights
n

           

This relationship can described by the following equation:

                                                                                                                   (4.8)p n
P
N

n( ) = ×

Recalling equations 4.6 and 4.7 for the NBS approach, we apply function 4.8 to produce

                                                                                                                     (4.9)η2 = wLocation
'

                                                                                               (4.10)Location n
P
N

n= × ×( )

Figure  4.2 illustrates the difference between the NBS approach and the PBS approach. If

initially, the total number of weights is 100 and the initial P is 0.5, then 50 connections are

removed by both NBS and PBS approach for the first run. But if the number of existing weights

goes down to 50, then 25 connections are removed by NBS, while only 12 connections are

removed by PBS.  
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Figure 4.2. Difference between NBS approach and PBS
approach (P = 0.5, N = 100)

 

   

In summary, the pruning process attempts to eliminate as many connections as possible from the

network, while maintaining the prespecified accuracy rate. During the pruning process relevant

attributes of the data are kept, while others are automatically discarded. An example

demonstrating the proposed algorithm is shown in the next section.

4.2.3 Method Illustration: Iris Classification Data

In this section, the Iris data set is used to illustrate how features can be selected by a neural

network. Ten repetitions of 10-fold cross validation were performed by the three proposed

pruning schemes. For a description of the Iris data set and how the data was prepared for each

cross-validation trail, the reader should refer to Sections 3.2 and 3.8 of Chapter 3.

#  Experiment 1

10 different neural networks were trained and pruned by using different training sets and testing

sets. The neural networks (with bias nodes) had 4 inputs, 5 hidden nodes, and 3 output nodes. The

required training accuracy rate 01 was set at 98.5%. The networks were trained by the BFGS

algorithm, starting from initial weights that had been randomly generated in the interval [-1,1].

By using the three different pruning approaches with an initial parameter p = 0.2, the
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experimental results are tabulated in Table 4.1. N.N.F.S means “neural network feature

selection”; the figures in parentheses are the standard deviations. The P-value was computed to

check if there is any significant increase or decrease in the accuracy of the networks with selected

input features from the three different pruning schemes compared to the networks with the whole

set of attributes as input without pruning. The P-value was also computed for testing if there is

any significant difference on the number of neural network connections before and after neural

network pruning.

The P-value for the accuracy rates show that there is not a significant difference in the mean

accuracy rates before and after neural network feature selections, based on our assumption of a

p-value of 0.05 or lower for significance. On the other hand, the large difference in the number

of neural network connections before and after three pruning schemes demonstrates the effect of

the pruning schemes for reducing the complexity of the neural network architecture. After neural

network feature selection, the VBS pruning approach yield a network with an average of 22

connections. In contrast, the average number of connections left in the network after NBS and

PBS approach was 24.2, and 25.2, respectively. Among the 10 neural networks, attributes sepal-

width, petal-length and petal-width were the most frequently selected features (each of these 3

features was selected by at least 6 neural networks).
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Table 4.1. The experimental results for the Iris data set using the neural network feature selection

methods (standard deviations are in parentheses)

 Before

N.N.F.S

After N.N.F.S

VBS NBS PBS

Number of attributes 4(0.000) 3.30(0.675) 2.90(0.994) 3.00(0.817)

Number of connections 40(0.000) 25.20(6.596) 24.20(7.927) 22.00(9.274)

Accuracy on training set

(%)

98.89(0.6) 98.52(0.0) 98.52(0.0) 98.52(0.0)

Accuracy on testing set

(%)

96.67(4.7) 96.00(4.7) 95.34(5.5) 94.67(6.1)

List of most frequent

selected attributes

sepal-length

sepal-width

petal-length

petal-width

sepal-width

petal-length

petal-width

sepal-width

petal-length

petal-width

sepal-width

petal-length

petal-width

P-value (Before /After

N.N.F.S)

Number of connections

- 0.000 0.000 0.000

P-value (Before /After

N.N.F.S)

Testing set accuracy

- 0.343 0.168 0.081

One representative network resulting from the PBS approach is depicted in Figure 4.3. It has only

3 hidden nodes, 3 input nodes with connections to hidden nodes and a total 13 connections. The

attribute sepal-length was distinguished as an irrelevant attribute, since it was not connected to

any of the hidden nodes.  
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   Bias

Sepal-length    Sepal-width Petal-length    Petal-width 

   Iris setosa    Iris versicolor    Iris virginica

   12.0

-5.9  4.3   
3.0   

-9.4   

6.4 -13.9 
7.8   

-2.8  

-11.1 

4.4 

-6.6 

-9.8   

Figure 4.3. A network with 13 weights for Iris classification.
The number next to a connection shows the weights for that
connection. The accuracy rates for the training and testing set
are 98.52% and 93.33% , repectively.

For comparison purposes, the experimental results of applying the Chi2 algorithm and the C4.5

learning technique are presented in Table 4.2, where “Before” and “After” means the C4.5 result

was obtained before or after using Chi2. For the Chi2 algorithm, the inconsistency rate * was set

to 2%  – that means only 3 (135×0.02) inconsistent results were acceptable after discretization.

Each of the 10 different cross-validation trials was performed using the Chi2 algorithm, then both

the original data and the dimensionally reduced ones were analyzed using C4.5 with its default

settings (Quinlan 1993). Note that here, the dimensionally reduced data refers to the original data

with a reduced feature space, not the size-reduced discrete data.

The most frequent selected features shown in Table 4.2 were those that were selected at least 6

times by the Chi2 algorithm based on the 10 cross-validation trials.
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Table 4.2. The predictive accuracies and tree size of C4.5 before and after Chi2 for the Iris data

set (standard deviations are in parentheses)

Before After P-value

Number of attributes 4(0.000) 3.3(0.675) 0.010

Number of data items 135(0.000) 25.1(10.100) 0.000

Tree Size 8.4(0.966) 8.2(1.033) 0.343

Accuracy on training set (%) 98.09(0.5) 98.09(0.5) -

Accuracy on testing set (%) 94.66(5.3) 94.66(5.3) -

List of most frequent selected

attributes

sepal-length

sepal-width

petal-length

petal-width

sepal-width

petal-length

petal-width

-

# Experiment 2           
In order to test if noise attributes can be removed by the proposed feature selection algorithm, a

modified version of the Iris data set was prepared. The modified version of the Iris data set

includes the 4 original attributes and an extra 5 noise attributes. The four original attributes sepal-

length, sepal-width, petal-length and petal-width were denoted by A0, A1, A2 and A3, and the

five noise attributes were labelled A4, A5, A6, A7 and A8. The attributes A4, A5, A6 and A7

were associated with attributes A0, A1, A2, and A3, respectively. The values of attributes A4

–A7 were determined by a standard normal distribution between the ave and (max - min)/6, where

ave, max and min are the mean, maximum and minimum values of the corresponding original

attributes A0 – A3. Attribute A8 was generated from a uniform distribution between 0 and 10.

In the experiment, a fully connected neural network was used for training by 10-fold cross

validation. The neural network consisted of 9 input nodes with a bias, 5 hidden nodes and 3

output nodes. The trained network was pruned until its accuracy on the training data dropped

below 98.5%. The parameter p was initially set to 0.2 for the three pruning methods. The results

of the experiments are summarized in Table 4.3. In this table, the number of attributes before and

after pruning by the three different pruning approaches and their standard deviations are given,

and the associated P-values are shown. All three pruning schemes successfully eliminated the 5
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   Bias

Sepal-length    Sepal-width Petal-length    Petal-width 

   Iris setosa    Iris versicolor    Iris virginica

    Noise 1    Noise 2    Noise 3    Noise 4    Noise 5 

Figure 4.4. Pruned network with 9 connections.

noise attributes and identified the attribute sepal-length as an irrelevant feature. A pruned

network using VBS is depicted in Figure 4.4.     

Table 4.3. The summarized neural network results on the modified Iris data set for three pruning

methods (standard deviations are in parentheses) 

VBS NBS PBS

No. of attributes before pruning 9(0.000) 9(0.000) 9(0.000)

No. of attributes after pruning 2.80(1.033) 2.90(0.568) 3.00(0.667)

P-value 0.000 0.000 0.000

4.3 Experiments
In the last section, we demonstrated the proposed neural network feature selection methods

applied to the Iris data set. In order to show the effectiveness of the algorithms, this section

presents the results of their applications to five practical problems  tested through 10-fold cross

validation. For comparison purposes, the experimental results of applying the Chi2 algorithm and

the C4.5 learning method on the same data sets are also presented. All the experimental results

are analyzed and assessed in Section 4.4. 
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As previously indicated, the initial p for the three neural network pruning schemes must be

specified. In order to avoid over-removing the weights of the network, the parameter p for the

VBS and NBS approaches is normally set to be very small, e.g., in the range of 0.01# p # 0.15.

However, due to the PBS approach’s automatic parameter selection ability, the initial P of the

PBS approach can be set to a larger value, e.g., in the range of 0.15# P # 1. In the experiments

associated with these three neural network pruning schemes, different values of parameter p were

tested. Only those values providing the best overall performance when considering both the

simplicity and accuracy of the network are presented in this section.     

4.3.1 Pima Indians Diabetes Data

For a description of the Pima Indians Diabetes data set and how the data was prepared for each

cross-validation trial, the reader is referred to Sections 3.3 and 3.8 of Chapter 3. 

Table 4.4 presents the experimental results using the Chi2 algorithm with an inconsistency rate

* = 5%, where I1 – I8 were explained in Table 3.3 of Chapter 3. The C4.5 analysis technique was

applied to both the original data sets and the data sets with a reduced feature space. The

predictive accuracies and tree sizes of C4.5 before and after the Chi2 processing, along with their

associated P-values, are also presented in Table 4.4. 

Table 4.4. The experimental results for the Pima Indians Diabetes data set using Chi2 feature

selection and C4.5 classification (standard deviations are in parentheses)

Before Chi2 After Chi2 P-value

Number of attributes 8(0.000) 6.9(0.738) 0.001

Number of data items 691.2(0.400) 472.1(66.200) 0.000

Tree Size 46.4(13.790) 41.2(15.530) 0.112

Accuracy on training set (%) 84.68(2.6) 83.51(2.6) 0.022

Accuracy on testing set (%) 73.94(4.6) 73.41(4.0) 0.501

List of most frequent selected

attributes

I1 - I8 I1  I2  I4 - I8 -
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For neural network feature selection methods, neural networks with 8 input nodes with a bias,

5 hidden nodes and 2 output nodes were trained by the BFGS algorithm. The required training

accuracy 01 was set to 79% as this accuracy can be achieved by the original un-pruned neural

networks. Three different pruning schemes with an initial p = 0.15 were applied to the networks.

The experimental results are summarized in Table 4.5. 

 

Table 4.5. The experimental results for the Pima Indians Diabetes data set using the neural

network feature selection methods (standard deviations are in parentheses)

 Before

N.N.F.S

After N.N.F.S

VBS NBS PBS

Number of attributes 8(0.000) 7.7(0.483) 7.8(0.422) 7.6(0.699)

Number of connections 55(0.000) 32.90(9.360) 29.40(5.780) 28.60(5.400)

Accuracy on training set

(%)

79.36(0.8) 79.59(0.6) 79.55(0.5) 79.67(0.6)

Accuracy on testing set

(%)

77.06(3.8) 76.03(4.4) 76.41(3.1) 75.40(4.3)

List of most frequent

selected attributes

I1 - I8 I1 - I8 I1 - I8 I1 - I8

P-value (Before /After

N.N.F.S)

Number of connections

- 0.000 0.000 0.000

P-value (Before /After

N.N.F.S)

Testing set accuracy

- 0.284 0.322 0.150

4.3.2 Wine Recognition Data

For a description of the Wine Recognition data set and how the data was prepared for each cross-

validation trial, the reader is referred to Sections 3.4 and 3.8 of Chapter 3. 

The results of applying the Chi2 algorithm to the Wine Recognition data are shown in Table 4.6,

where I1 – I13 were explained in Table 3.5 of Chapter 3. The inconsistency rate * = 1% was
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allowed in the experiment. C4.5 with its default setting was used to check if the Chi2 algorithm

had seriously degraded the performance of the learning method.

Table 4.6. The experimental results for the Wine Recognition data set using Chi2 feature

selection and C4.5 classification (standard deviations are in parentheses)

Before Chi2 After Chi2 P-value

Number of attributes 13(0.000) 5.6(0.843) 0.000

Number of data items 160.2(0.420) 39.4(11.080) 0.000

Tree Size 9.2(0.632) 11.2(0.632) -

Accuracy on training set (%) 98.90(0.58) 98.85(0.4) 0.673

Accuracy on testing set (%) 92.73(7.4) 94.92(6.2) 0.354

List of most frequent selected

attributes

I1 - I13 I1  I3  I6  I7  I10 

I12

-

For neural network feature selection methods, networks with 13 input nodes with a bias, 5 hidden

nodes, and 3 output nodes were trained and pruned. The required training accuracy 01 was set

to be 100%. The parameter p for the VBS and NBS pruning approaches was set to 0.01 and 0.05,

respectively. For the PBS approach, the initial P was 0.2. The experimental results are

summarized in Table 4.7.
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Table 4.7. The experimental results for the Wine Recognition data set using the neural network

feature selection methods (standard deviations are in parentheses)

 Before

N.N.F.S

After N.N.F.S

VBS NBS PBS

Number of attributes 13(0.000) 6.6(0.699) 6.6(0.699) 6.5(1.080)

Number of connections 85(0.000) 13.8(1.814) 13.8(1.814) 13.6(2.503)

Accuracy on training set

(%)

100(0.0) 100(0.0) 100(0.0) 100(0.0)

Accuracy on testing set

(%)

96.59(3.9) 96.56(4.8) 96.56(4.8) 95.40(6.6)

List of most frequent

selected attributes

I1 - I13 I1  I3  I7  I10  I11 I13 I1  I3  I7  I10  I11 I13 I1  I3  I7  I10  I11 I13

P-value (Before /After

N.N.F.S)

Number of connections

- 0.000 0.000 0.000

P-value (Before /After

N.N.F.S)

Testing set accuracy

- 0.986 0.986 0.537

4.3.3 Golf Course Problem

For a description of the Golf Course Problem and how the data was prepared for each cross-

validation trial, the reader is referred to Sections 3.5 and 3.8 of Chapter 3. 

The experimental results before and after using Chi2 algorithm and C4.5 are summarized in

Table 4.8, where I1 – I4 were explained in Table 3.7 of Chapter 3. The inconsistency rate * was

set to 5%. 
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Table 4.8. The experimental results for the Golf Course Problem using Chi2 feature selection

and C4.5 classification (standard deviations are in parentheses)

Before Chi2 After Chi2 P-value

Number of attributes 4(0.000) 4(0.000) -

Number of data items 1372.5(0.530) 365.6(30.360) 0.000

Tree Size 34.8(1.476) 34.8(1.476) -

Accuracy on training set (%) 74.51(0.6) 74.51(0.6) -

Accuracy on testing set (%) 70.67(3.3) 70.67(3.3) -

List of most frequent selected

attributes

I1 - I4 I1 - I4 -

Table 4.9 presents the experimental results after the training and pruning of neural networks

with 4 inputs plus a bias, 10 hidden nodes and 5 output nodes. The parameter p for the VBS

and NBS approach was set to 0.05. The initial P for the PBS approach was 0.15. The required

training accuracy 01 was set at 73% as this accuracy can be achieved by the original un-

pruned neural networks.
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Table 4.9. The experimental results for the Golf Course data using the neural network feature

selection methods (standard deviations are in parentheses)

 Before

N.N.F.S

After N.N.F.S

VBS NBS PBS

Number of attributes 4(0.000) 4(0.000) 4(0.000) 4(0.000)

Number of connections 100(0.000) 63.7(3.65) 63.1(3.540) 64.4(4.600)

Accuracy on training set (%) 73.58(0.5) 75.20(0.2) 75.28(0.2) 75.19(0.1)

Accuracy on testing set (%) 73.40(3.3) 73.64(2.8) 73.80(3.6) 73.39(2.9)

List of most frequent selected

attributes

I1 - I4 I1 - I4 I1 - I4 I1 - I4

P-value (Before /After

N.N.F.S)

Number of connections

- 0.000 0.000 0.000

P-value (Before /After

N.N.F.S)

Testing set accuracy

- 0.763 0.525 0.986

4.3.4 Cook Islands Sea Cucumber Habitat Data

For a description of the Cook Islands Sea Cucumber Habitat data set and how the data was

prepared for each cross-validation trial, the reader is referred to Sections 3.6 and 3.8 of

Chapter 3. 

The experimental results before and after using the Chi2 algorithm and C4.5 are summarized

in Table 4.10, where I1 – I10 were explained in Table 3.9 of Chapter 3. The inconsistency rate *

was set to 1%. 
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Table 4.10. The experimental results for the Cook Islands Sea Cucumber data using Chi2

feature selection and C4.5 classification (standard deviations are in parentheses)

Before Chi2 After Chi2 P-value

Number of attributes 10(0.000) 6.7(0.823) 0.000

Number of data items 115.2(0.420) 62.6(7.760) 0.000

Tree Size 11.8(5.010) 12.4(3.270) 0.541

Accuracy on training set (%) 93.38(2.3) 92.32(4.2) 0.299

Accuracy on testing set (%) 81.91(9.3) 82.68(9.2) 0.343

List of most frequent selected

attributes

I1 - I10 I1 - I7 -

For neural network feature selections, neural networks with 11 input nodes plus a bias, 3

hidden nodes, and 2 output nodes were trained and pruned. Table 4.11 presents the

experimental results, where X1 - X11 were explained in Table 3.13 of Chapter 3. The parameter

p for the VBS and NBS approach was set to 0.15. The initial P for the PBS approach was 0.2.

The required training accuracy 01 was 90% as this accuracy can be achieved by the original

un-pruned neural networks.
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Table 4.11. The experimental results for the Cook Islands Sea Cucumber data using the neural

network feature selection methods (standard deviations are in parentheses)

 Before

N.N.F.S

After N.N.F.S

VBS NBS PBS

Number of attributes 11(0.000) 6.8(2.486) 6.9(1.792) 7.0(1.491)

Number of connections 42(0.000) 18.2(9.680) 15.0(3.560) 15.7(4.300)

Accuracy on training set (%) 91.48(1.3) 90.78(0.6) 90.68(0.8) 91.04(0.8)

Accuracy on testing set (%) 85.95(8.7) 83.45(10.2) 84.34(7.3) 84.34(7.3)

List of most frequent selected

attributes

X1 - X11 X2 - X5 , X7 - X9 X2 - X9 X2 - X8

P-value (Before /After

N.N.F.S)

Number of connections

- 0.000 0.000 0.000

P-value (Before /After

N.N.F.S)

Testing set accuracy

- 0.373 0.333 0.333

4.3.5 New Zealand Asthma Incidence Data

For a description of the New Zealand Asthma Incidence data set and how the data was

prepared for each cross-validation trial, the reader is referred to Sections 3.7 and 3.8 of

Chapter 3. 

Table 4.12 summarizes all related parameters for the experiments using Chi2 and the neural

network methods. Table 4.13 presents the results of experiments conducted by Chi2 and the

C4.5 methods, where I1 – I9 were explained in Table 3.11 of Chapter 3.
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Table 4.12. Experimental parameter settings for the New Zealand Asthma Incidence data

Inconsistency rate * 2%

NN required training accuracy 01 68%

 p for VBS 0.05

 p for NBS 0.15

Initial P for PBS 0.2

Table 4.13. The experimental results for the New Zealand Asthma Incidence data using Chi2

feature selection and C4.5 classification (standard deviations are in parentheses)

Before Chi2 After Chi2 P-value

Number of attributes 9(0.000) 7.3(0.675) 0.000

Number of data items 900(0.000) 873.9(3.280) 0.000

Tree Size 219.6(13.100) 183.8(46.900) 0.041

Accuracy on training set (%) 73.19(0.7) 70.32(2.4) 0.005

Accuracy on testing set (%) 49.00(3.4) 48.80(3.4) 0.758

List of most frequent selected

attributes

I1 - I9 I1 - I3 , I5 - I7, I9 -

For the neural network feature selection, including the input for bias, a total of 75 input nodes,

20 hidden nodes and 2 output nodes were present in the original neural networks. The

experimental results are shown in Table 4.14, where X1 – X74 were explained in Table 3.14 of

Chapter 3.
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Table 4.14. The experimental results for the New Zealand Asthma Incidence data using the

neural network feature selection methods (standard deviations are in parentheses)

 Before

N.N.F.S

After N.N.F.S

VBS NBS PBS

Number of attributes 74(0.000) 66.7(3.455) 65.8(6.729) 65.6(5.440)

Number of connections 1560(0.000) 949.8(44.800) 991.8(37.700) 984.6(43.500)

Accuracy on training set (%) 68.61(2.9) 68.42(0.3) 68.20(0.1) 68.38(0.3)

Accuracy on testing set (%) 51.70(3.0) 51.50(4.6) 52.20(4.0) 52.90(3.8)

List of most frequent selected

attributes

X1 - X74 X1, X2, X4 - X44,

X47, X49 - X74

X1, X2, X4 -

X44, X47, X49 -

X74

X1, X2, X4 -

X44, X47, X49 -

X74

P-value (Before /After

N.N.F.S)

Number of connections

- 0.000 0.000 0.000

P-value (Before /After

N.N.F.S)

Testing set accuracy

- 0.900 0.725 0.443

4.4 Performance Assessment
Chapter 1 introduced the dimensions along which feature selection methods should be

evaluated: predictive accuracy, complexity of representations, feature reduction, computing

time, and generality of selected features. This section presents an analysis of the experiments

that were described in the previous section  in terms of those five evaluative criteria.

4.4.1 Predictive Accuracy

With all six problem domains, the P-values for the accuracy rates on the testing sets in Tables

4.2, 4.4, 4.6, 4.8, 4.10, and 4.13 show that there is no significant difference in the mean

accuracy rates of the C4.5 decision tree procedure when the Chi2 procedure is used as a

feature selection method. For the New Zealand Asthma Incidence data set, the C4.5 procedure

failed regardless of whether Chi2 was applied or not. For the remaining five data sets,

although it is not statistically significant, in only one case (Pima Indians Diabetes data set) did
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the C4.5 procedure have slightly poorer performance after feature selection (73.94% compared

with 73.41%).

For the Golf Course Problem, all the original input features remained after Chi2 feature

selection, hence feature selection had no impact in terms of the number of data items used by

the C4.5 procedure. However, if the size-reduced discrete data items generated by Chi2 were

input to the C4.5 procedure, a mean accuracy rate on the test set was 65.63±7.95%, which is

significantly worse at the 99% level than with the initial data set without Chi2 feature

selection. The decrease in accuracy might be due to the C4.5 procedure’s lesser capability in

connection with discrete data than with continuous data. 

With respect to the three neural network feature selection schemes, all three have

demonstrated their strong generalization abilities. The P-values for the accuracy rates in

Tables 4.1,  4.5, 4.7, 4.9, 4.11, and 4.14 show that there is no significant difference in the

mean accuracy rates before and after neural network feature selection on the empirical six

problem sets. 

When comparing the accuracy performance of neural network feature selection methods with

the performance of C4.5 with features selected by the Chi2 method, the neural network feature

selection methods perform better on all six data sets if  statistical significance is disregarded.

When statistical significance is considered, the P-values are summarized in Table 4.15. In

three cases – the Pima Indians Diabetes data set, the Golf Course Problem, and the New

Zealand Asthma Incidence data set, the neural network feature selection methods perform

significantly better than the C4.5 with features selected by the Chi2 method. 
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Table 4.15. The P-values associated with predictive accuracy when comparing the three

neural network feature selection schemes with C4.5 procedure based on the Chi2-selected

features

VBS/C4.5 with Chi2 NBS/C4.5 with Chi2 PBS/C4.5 with Chi2

Iris 0.997 0.673 0.340

Pima Indians Diabetes 0.050 0.014 0.029

Wine Recognition 0.554 0.554 0.869

Golf Course Problem 0.016 0.014 0.016

Cook Islands Sea

Cucumber Habitat

0.800 0.432 0.698

New Zealand Asthma

Incidence

0.148 0.012 0.011

It should be mentioned that the difference in predictive accuracy between C4.5 based on the

selected features and neural network learning is likely due to the difference of learning ability

between the C4.5 decision tree model and the neural network learning model. Some detailed

descriptions of these two learning models were provided in Sections 2.3.1 and 2.5.2 of Chapter

2. For discussions and experiments concerning the difference in their learning abilities, the

reader should consult (German et al. 1999).   

4.4.2 Complexity of Representations

After Chi2 feature selection, the tree size of C4.5 does not always decrease. In fact, a decrease

is only observed in connection with two applications (the Pima Indians Diabetes data set and

the New Zealand Asthma Incidence data set). This shows that although the feature spaces of

data sets can be reduced by the Chi2 algorithm, the dimensionally reduced data representation

might require more complex tree structures to be interpreted. However, after neural network

feature selection, the complexity of the neural network architecture is always reduced. A

summary of the number of neural network connections before and after neural network

pruning schemes for all six data sets is provided in Table 4.16. It can be seen that the

reduction of neural network connections can be as much as 84% of the original size (see the

number of connections for the Wine Recognition data set in Table 4.16). Note that the
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simplified neural network can not only identify the relevant input attributes but also provides a

good foundation for the use of rule extraction techniques to extract more comprehensible

rules. 

Table 4.16. A summary of number of neural network connections before and after neural

network selection methods on six data sets (standard deviations are in parentheses)

Before

N.N.F.S

After N.N.F.S

VBS NBS PBS

Iris 40(0.000) 25.20(6.596) 24.20(7.927) 22.00(9.274)

Pima Indians Diabetes 55(0.000) 32.90(9.360) 29.40(5.780) 28.60(5.400)

Wine Recognition 85(0.000) 13.8(1.814) 13.8(1.814) 13.6(2.503)

Golf Course Problem 100(0.000) 63.7(3.65) 63.1(3.540) 64.4(4.600)

Cook Islands Sea Cucumber

Habitat

42(0.000) 18.2(9.680) 15.0(3.560) 15.7(4.300)

New Zealand Asthma

Incidence

1560(0.000) 949.8(44.800) 991.8(37.700) 984.6(43.500)

Comparing the three different neural network feature selection schemes, the PBS approach has

produced the simplest networks with the fewest connections on three applications, and

produced the second simplest neural networks on two other applications. 

4.4.3 Number of Features Selected and Generality of the Selected Features

If we know a priori that some features are relevant, we can expect a good feature selection

method to find these features, either in the minimum subset or at the front of a ranked list.

Knowing that some features are irrelevant or redundant can also help. Just like the

experiments on the modified version of the Iris data set described in Section 4.2.3, the neural

network feature selection approaches have shown their ability to remove noise features. But

this type of evaluation is not always possible in many real-world applications. Without

knowing data characteristics, indirect evaluation of features must be employed (Liu & Motoda

1998). 
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Indirect evaluation means that, instead of checking whether features are relevant or not, a

learning algorithm is evaluated to see whether using selected features can improve or at least

maintain performance. Since one of the ultimate goals of feature selection is to improve or

maintain predictive accuracy, as long as the accuracy improves or stays approximately the

same, we can assume that the selected features are relevant. As already indicated, with Chi2-

selected features, C4.5 performs equally well on all six applications compared with its

performance with the original feature set, and neural networks have significantly better

performance than C4.5 on Chi2-selected features in three applications. So both the Chi2

algorithm and the neural network feature selection approaches have demonstrated their

capability of selecting relevant features for the given problem sets. A summary of the number

of features before and after applying the Chi2 algorithm and the neural network feature

selection approaches on six data sets is provided in Table 4.17.

Table 4.17. A summary of number of features before and after applying the Chi2 algorithm

and neural network feature selection approaches on six data sets

Before

Chi2

After

Chi2 

Before

N.N.F.S

After N.N.F.S

VBS NBS PBS

Iris 4(0.000) 3.3(0.675) 4(0.000) 3.3(0.675) 2.9(0.994) 3.0(0.817)

Pima Indians

Diabetes

8(0.000) 6.9(0.738) 8(0.000) 7.7(0.483) 7.8(0.422) 7.6(0.699)

Wine Recognition 13(0.000) 5.6(0.843) 13(0.000) 6.6(0.699) 6.6(0.699) 6.5(1.080)

Golf Course

Problem

4 (0.000) 4(0.000) 4(0.000) 4(0.000) 4(0.000) 4(0.000)

Cook Islands Sea

Cucumber Habitat

10(0.000) 6.7(0.823) 11(0.000) 6.8(2.486) 6.9(1.792) 7.0(1.491)

New Zealand

Asthma Incidence

9(0.000) 7.3(0.675) 74 (0.000) 66.7(3.455) 65.8(6.729) 65.6(5.440)

When features are selected, it is also useful to know whether the same set of features are

selected by different techniques. If possible, we often hope that the relevant features are

selected independent of any feature selection method. In this context, we take a closer look at
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the selected features derived by the different feature selection methods on the six learning

applications:

• For the Iris data set, the attributes sepal-width, petal-length and petal-width were selected by

both approaches.

• For the Pima Indians Diabetes data set, the neural network approaches selected all 8 input

attributes as relevant features, while the Chi2 method selected 7 relevant features.

• For the Wine Recognition data set, both the Chi2 method and the neural network selection

schemes selected 6 relevant features. Although two different sets of selected features were

generated by the Chi2 method and the neural network approaches, 4 of the selected features

were common to the two approaches.

• For the Golf Course Problem, all 4 input attributes were considered to be relevant by the

Chi2 feature selection method and the neural network feature selection approaches.

• For the Cook Islands Sea Cucumber data set, the Chi2 method selected 7 relevant features,

while 7 or 8 features were considered to be relevant by three neural network feature selection

methods (PBS and NBS selected 7 relevant features, and NBS selected 8 relevant features).

Attributes %mod/silt and %gravel were removed by the Chi2 method and the three neural

network approaches. 

• For the New Zealand Asthma Incidence data set, the attributes Mean temperature, Humidity

and Sunshine were removed by the Chi2 method, while the neural network feature selection

approaches retained them as relevant features. Since the neural network has a superior ability

to handle discrete attributes, it has given us more insight into the problem. For example, all

three neural network feature selection approaches removed the input attribute X3 (Table

4.14), which indicated that the attribute X3 that represents “ethnicity Pacific Islander” did not

have any influence to on the output classification. This kind of feature reduction is not

possible obtained from the Chi2 method due to its limitation of working on the numeric

attributes only. 

In summary, the selected features from the neural network methods overlap those selected by

the Chi2 algorithm on five applications (the Iris data set, the Pima Indians Diabetes data set,

the Wine Recognition data set, the Golf Course Problem, and the Cook Islands Sea Cucumber
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data set). In only one case – the New Zealand Asthma Incidence data set, the neural networks-

selected features do not match those from the Chi2 algorithm.

4.4.4 Computing Time

Having training and pruning processes as their essential procedures, neural network feature

selection approaches are computationally more expensive than the P2 statistic-based algorithm.

However the differences can be reduced if computationally efficient training procedures are

employed in connection with neural networks.  For our experiments, we implemented the

BFGS search method which resulted in a speedup of up to two orders of magnitude over the

traditional backpropagation method. For example, with the neural network feature selection

approach PBS, the neural network employing back-propagation on the Iris data set took about

43 seconds on a Pentium III platform (Intel 686 processor Model 7 Stepping 3) with 128

Mbytes of memory, and the neural network employing BFGS took 4 seconds to achieve a

similar result on the same computer. However, the Chi2 method only spent 2 seconds to

complete the procedure. 

4.5 Summary
In this chapter, three feature selection approaches that employ neural networks and associated

pruning schemes have been described. The neural network algorithms have been evaluated

and compared with the Chi2 algorithm by experimenting with six practical applications. The

experimental analysis has shown that the proposed neural network feature selection algorithms

have a potentially useful capability to select relevant features by removing a considerable

number of network connections while maintaining good predictive accuracy. The proposed

algorithms offer a different approach from those of statistical-based methods and have been

demonstrated to be effective for selecting relevant input attributes for classification purposes.

The experimental results have also shown that the P2 statistic-based feature selection method,

Chi2, is a simple and efficient tool for feature selection and data reduction.

In the next chapter, more applications of Chi2 algorithm will be presented.        
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Chapter 5 
Applications of the P2 Statistic-based

Discretization Algorithm

5.1 Introduction
As described in Chapter 2, a P2 statistic-based discretization algorithm, Chi2, can select relevant

features according to the characteristics of the data. In addition, it performs automatic

discretization, which can reduce the number of data items. This chapter first describes how to

apply the Chi2 algorithm to large spatial data sets in order to perform spatial data filtering, and

then presents a Chi2 algorithm-based membership function selection method for fuzzy systems.

in connection with applications of fuzzy neural networks In order to demonstrate the

effectiveness of the Chi2-based membership function selection method, experiments with three

data sets are then described.

5.2 Spatial Data Filtering 

The increasing availability of large stores of spatial data has led to demands for improved

methods for analyzing these data sets. Neuro-fuzzy techniques have some advantages in

connection with managing and analyzing these geographical data sets (Purvis et al. 1999). In the

case of artificial neural networks, their capability of approximating any continuous function to

any desired degree of precision, without the need for specifying the type of function (Cybenko

1989), makes neural networks good candidates to analyse and process spatial data. In addition,

neural networks can be applied to incomplete or imprecise data and still yield acceptable results,

which makes them particular suitable for the analysis of digital terrain information commonly

found in the land-use modelling domain. Fuzzy system modelling provides a mathematical

environment in which vague conceptual phenomena can be rigorously studied. It exploits the

tolerance for uncertainty, imprecision and partial truth of various types (in fuzzy logic) to achieve

tractability, low solution costs, and a better rapport with reality, which is particularly useful for

handling uncertainty in spatial data and GIS-based analysis (Shyllon 2000). 

In the context of large spatial information data sets, the hope is that by using Neuro-fuzzy

techniques one can perform data trawling without having to make presuppositions concerning

the data distribution function , and, also extract knowledge from the data that can be used in
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subsequent analysis or operations. Given the typically large sizes of these data sets, it may be

advantageous to perform data filtering to reduce the size of the data set prior to carrying out

computationally expensive connectionist analysis, and thus the goal of data filtering is to reduce

the size of a large data space, both in terms of number of data items and number of features (so

that neuro-fuzzy engineering computation can be more efficiently performed) without sacrificing

the discriminating power associated with the original data. In addition, being able to identify

which features are irrelevant can help to reduce the effort of data collection. 

There are two areas where data reductions can be made:

# If the data elements are highly correlated, it should be possible to reduce the number of data

elements under consideration. This is likely to be true with spatial data sets, where

neighbouring locations are likely to contain correlated information (Toblers 1969). With

neural computations this should result in a reduction of the size of the training set.

# If the individual features associated with each data element are correlated, it should be

possible to consider a subset of the features and still retain sufficient discriminating power.

This should lead to smaller neural network architectures and hence speedier computation. 

The Chi2 statistic-based discretization algorithm offers promise in both of the above areas for

spatial data preparation. It can result in a smaller number of data items, and a smaller number of

features among the data items that remain.

Consider, for illustrative purposes, a version of the golf course problem altered from that

described in Section 3.5 of Chapter 3. The previous solution rule set involved only a

consideration of the altitude right at the given site: a high (local) altitude resulted in a

contribution of low “altitude suitability” and thus a negative impact on overall site suitability. On

this occasion the site suitability of a golf course will be determined solely by how ‘level’ the

terrain is in the region surrounding the site, and the attributes of temperature, rainfall, and

distance-to-urban-centre will be ignored. Since our data set lists the mean altitude for each 1 km2

block in the New Zealand South Island, an evaluation will be made of the difference between the

altitude of the block in question and that of its eight neighbouring blocks. Let alt_diff be the



114

Figure 5.1. Region of
blocks under analysis

maximum difference in altitude between the given block and its eight nearest neighbours. Then

the “altitude suitability”, alt_suitability, can be set according to the following conditions:

                          If alt_diff >= 377.8                                       then alt_suitability =  0

                          If alt_diff >= 276.3 and alt_diff < 377.8      then alt_suitability = 1

                          If alt_diff >= 188.4 and alt_diff < 276.3      then alt_suitability = 2

                          If alt_diff >= 100.5 and alt_diff < 188.4      then alt_suitability = 3

                          If alt_diff >= 0        and alt_diff < 100.5      then alt_suitability = 4

In other words, a level region is considered likely to be good for golf course siting if it located

on level ground as specified by the eight nearest neighbour 1 km2 blocks, irrespective of whether

the region is a plateau or low lying land. 

Now to make this a more realistic data trawling experiment, we suppose that the data mining

analysts for this problem do not know the size of the region around a site that contributes to good

golf course selectibility and thus should be considered around each block for analysis. So they

have set the size of the region to be 25 blocks as shown in Figure 5.1.

                                         

This 25-block region then will represent a window on the spatial data set that is located

appropriately whenever a given block (the black square in Figure 5.1) is to be considered for site

suitability. Only the grey-shaded blocks come into play for the determination of the solution set,

but the hypothetical analysts do not “know” this. Thus for each site, there are 25 inputs. 
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Figure 5.2. Attributes of altitude difference merged by
the data filtering procedure. Merged attribute indices are
shown in shaded circles

According to experiments conducted by Benwell et al. (1995) and Purvis et al. (1999), a sample

size of 1000 was adequate for neural network training. Therefore, 1000 blocks were randomly

chosen from a central region of the South Island. A Chi2 statistic-based discretization algorithm

was applied. The inconsistency rate was set to be 0.3%, so that up to 3 (that is 1000*0.3%)

inconsistent elements would be allowed before attribute merging would be halted. The results are

shown in Figure 5.2.

                       

Spatial data filtering merged 17 inputs (the shaded circles), leaving only 8 relevant inputs, which

exactly identifies the correct features. With just these remaining attributes, a 3-layer artificial

neural network with 8 input nodes, 10 hidden nodes and 5 output nodes was trained over the 1,000

blocks using the backpropagation algorithm. The trained network was then tested by applying it

over an additional 100,000 randomly chosen blocks and comparing its classification with that of

the ‘experts’. Its evaluation is shown in Table 5.1.

Table 5.1. Test results of the neural network after the data filtering procedure

No difference 95,856 (95.86%)

One class difference 3,721   (3.721%)

Two class difference 403      (0.403%)

Three class difference 19        (0.019%)

Four class difference 1          (0.001%)
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Figure 5.3. Attributes of altitude difference, rainfall and mean temperature
merged by the data filtering procedure. Merged attribute indices are shown
in shaded circles

As can be seen from Table 5.1, 95.86% of the blocks were classified correctly. Moreover, if a

misclassification by one class difference is considered tolerable, then more than 99% of the results

of the neural network’s classifications are acceptable. 

Now consider an expanded version of the same problem. Instead of considering only how level

a site is, suppose we are also consider rainfall and mean temperature for a given block. A new

“overall golf course suitability” rule set was then used, that for simplicity did not involve the

distance to a major urban centre of the South Island; it was only a function of the local rainfall,

the local mean temperature, and the altitude difference as described above. Again, assume that our

analysts do not know the expert’s criteria and so select 25-block regions for each of altitude,

rainfall, and mean temperature. With the 25-block region for each site under consideration, there

are now 75 attributes to be evaluated. This would necessitate a large neural network with

significant computational implications. In order to lessen the computational burden that this

implies, we applied the data filtering technique of Chi2 method again. 

1,500 blocks were randomly chosen from a central portion of the South Island, and associated with

each block was a region like that shown in Figure 5.1. The inconsistency rate was set at 0.5%, so

that up to 8 (1500*0.5%) inconsistent elements would be allowed before attribute merging would

be halted. The results are shown in Figure 5.3.     
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The attributes are labelled with indices from 0 to 74 and are distributed among the 25 blocks as

shown in the figure. For each individual block, the altitude attribute is associated with the first

(lowest numbered) index, followed by the rainfall and temperature indices. After discretization,

104 of the 1,500 original data elements were found to be redundant, so the original data set could

be reduced to 1,396. 52 of the original 75 attributes were discarded, leaving 23 features necessary

for classification of the 1,396 data elements to 99.5% accuracy. 

The data filtering operation correctly identified the central block’s temperature attribute as

essential (index 38), but also retained two outer temperature attributes. This can happen due to the

correlations among the data values and the set of remaining attributes can be reduced if more data

elements are considered for the training set. This problem is more evident with the rainfall

attribute, which played a relatively small importance in the overall site suitability rule set. Also

the variation in rainfall over the portion of the South Island considered for this experiment was

relatively uniform.

For the altitude attribute, the central block’s attribute was correctly identified as irrelevant, while

5 of the 8 neighbouring blocks’ altitude attributes were retained. However 3 presumably essential

blocks were discarded by the filtering procedure, and some altitude attributes for blocks outside

the neighbouring region were retained. Again, the correlations in the smoothly varying data

attributes enabled the data filtering procedure to classify the discretized data set to 99.5% accuracy

with the 23 attributes it selected, even though not all of the attributes were the ones that we

expected. They are still sufficient to achieve satisfactory classification and offer a greatly reduced

data set for subsequent neuro-fuzzy analysis.

The above two case studies have demonstrated that the Chi2-based spatial data filtering can

successfully reduce the number of spatial data items and spatial features. The illustrated examples

might also be well-suited for studying feature construction techniques, since feature construction

techniques might be able to create a set of new features that only capture the expression regarding

the slope of the land, such as altitude difference between the given block and its eight nearest

neighbours in the first example.  



118

5.3 A Chi2-based Membership function selection Method for Fuzzy Systems
The first step necessary to implement a basic fuzzy system if one is using continuous real-valued

data is to convert the real-valued data into a fuzzified representation using fuzzy membership

functions (MFs). As described in Section 2.3.3 of Chapter 2, the membership functions are

typically in practice determined subjectively by the designer, which can often be difficult and

error-prone. It would be preferable to let the data determine how many and what kind of

membership functions to use. This is what inspires the Chi2-based membership function selection

approach. 

5.3.1 Fuzzy Membership function selection based on the Chi2 Approach

The goal of the Chi2-based membership function selection approach is to choose the optimal

membership functions via the Chi2 algorithm to make neuro-fuzzy computation more efficient.

The Chi2-based membership function selection approach performs automatic discretization of the

data, which can lead to an appropriate selection of the number and widths of trapezoidal

membership functions.

The merged intervals for a given attribute (input) from the Chi2 algorithm (phase 1 or phase 2)

determine the number and the widths of the membership functions. Four-point trapezoidal

membership functions (see Figure 5.8) are used such that each input value  belongs to a maximum

of two membership functions, the membership degrees for which will always sum to one. In order

to calculate the boundaries of each membership function, first the smaller interval is chosen from

each pair of adjacent intervals. Then the half size (or any size smaller than the half size, e.g.

quarter size) spaces of these smaller intervals are calculated. The fuzzy boundaries are obtained

by setting those spaces on both sides of each interval boundary. For example, for the Iris data set

described in Section 3.2 of Chapter 3, three intervals (discrete values) are needed for the attribute

petal-width (X) at the end of phase 2: 

                                     0.1 # X < 1.0 6 1 

                           1.0 # X < 1.7 6 2   

                                  X $1.7 6 3
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Figure 5.4. Membership functions for attribute petal-
width of the Iris data set created by the Chi2-based
approach

Thus for attribute petal-width, three membership functions are needed as shown in Figure 5.4. The

half size width 0.35 was calculated from the interval [1, 1.7) since it was a smaller interval

compared with its neighboring interval [0.1, 1). Consequently 1.0 - 0.35 = 0.65 was set as the

lower boundary for the second membership function, and 1.0 + 0.35 = 1.35 was set as the upper

boundary for the first membership function.

                          

5.3.2 Experiments

In this section, we describe the use of a fuzzy neural network model, called FuNN, to test the

effectiveness of the Chi2-based membership function selection method. The detailed descriptions

of the FuNN model were provided in Section 2.3.4 of Chapter 2. Three example applications were

used for experiments. They are: the Pima Indians Diabetes data set, the Golf Course Problem, and

the Cook Islands Sea Cucumber data set. For comparison and evaluation purposes, the fixed

centre-based membership function selection method was also applied to these data sets. For the

descriptions of these three data sets, and how the Pima Indians Diabetes data set and the Cook

Islands Sea Cucumber data set were split for training and testing by 10-fold cross validation, the

reader should refer to Chapter 3. In order to directly compare the experimental results with those

demonstrated by Benwell et al. (1995) and Purvis et al. (1999), for the experiment conducted for

the Golf Course Problem, 1000 randomly selected samples were used for training and the entire

data set (153,036 samples) was used for testing.
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# Pima Indians Diabetes Data Set

The task of this problem domain is to analyse the patients who may show signs of diabetes. The

detailed descriptions are provided in Section 3.3 of Chapter 3.

Fixed Centre-based Approach

Each of the 8 input variables was represented as five fuzzy values. The membership functions for

the attribute  number of times pregnant are illustrated in Figure 5.5(a). The condition elements

layer of the fuzzy neural network was specified to have 40 nodes, and the middle (rule) layer was

given 10 nodes. Thus the five layer fuzzy neural network had the configuration shown in Table

5.2. The BFGS algorithm was used to train the middle layers. Ten repetitions of 10-fold cross

validation were used to assess the accuracy. The mean accuracy rates for training and test data,

and their standard deviations are shown in Table 5.5. 

Table 5.2. Fuzzy neural network configuration based on the centre-based approach for the Pima

Indians Diabetes data set 

Layer Number of Nodes

1 8

2 40

3 10

4 2

5 1

  

Chi2 Approach  

The same 10 data partitions of cross validation as those used in the previous section were used

with the Chi2 approach. For each data partition, the Chi2 algorithm was executed on the training

data and generated a mapping table, based on which the training data and test data were fuzzified.

A representative mapping table that includes the number of intervals and interval boundaries for

the attributes at the end of Phase 2 of the Chi2 execution are presented in Table 5.3.
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Table 5.3. The number of intervals and interval boundaries after Phase 2 of the Chi2 method for

the Pima Indians Diabetes data set

Attribute No. of Intervals Interval Boundaries

A0 2 [0, 7), [7, +4)

A1 5 [0, 44), [44, 100), [100, 128), [128, 155), [155, +4)

A2 2 [0, 84), [84, +4)

A3 3 [0, 8), [8, 24), [24, +4)

A4 3 [0, 37), [37, 96), [96, +4)

A5 9 [0, 22.9), [22.9, 28.9), [28.9, 32.9), [32.9, 33.1), [33.1, 33.3),

[33.3, 45.4), [45.4, 46.1), [46.1, 48.3), [48.3, +4) 

A6 10 [0.078, 0.272), [0.272, 0.279), [0.279, 0.537), [0.537, 0.545),

[0.545, 1.189), [1.189, 1.251), [1.251, 1.318), [1.318, 1.4), [1.4,

1.893), [1.893, +4)

A7 4 [21, 23), [23, 28), [28, 63), [63, +4)

According to Table 5.3, the number of membership functions for each input variable are variable;

for example there are 2 membership functions for A0 (number of times pregnant) and 9

membership functions for A5 (body mass index). The membership functions for A0 (number of

times pregnant) are shown in Figure 5.5(b). Based on Table 5.3, a fuzzy neural network

architecture (shown in Table 5.4) with 38 nodes in the condition elements layer, 10 nodes in the

rule layer and 2 nodes in the action elements layer was constructed and is shown in Table 5.4. 

Table 5.4. Fuzzy neural network configuration based on the Chi2-based approach for the Pima

Indians Diabetes data set 

Layer Number of Nodes

1 8

2 38

3 10

4 2

5 1
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Figure 5.5. Membership functions for the attribute
number of times pregnant by (a) centre-based and (b)
Chi2-based approach  

With the Chi2-based FuNN, the mean accuracy rates of ten-fold cross validation, and the standard

deviations of these values are shown in Table 5.5.
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Table 5.5. Accuracy rates (%) of the fuzzy neural networks for the Pima Indians Diabetes data

set  (standard deviations are in parentheses)

Membership functions

produced by the centre-based

approach

Membership functions

produced by the Chi2-based

approach

Acc. on training set (%) 83.73(8.7) 88.88(5.7)

Acc. on test set (%) 71.99(3.3) 76.19(2.7)

P-value (Acc. on test set) 0.01

The P-value was computed for testing the null hypothesis that the means of two groups of

observations on test accuracy are equal. The P-value 0.01 shows that the performance with the

Chi2 approach was significantly better than that with the centre-based approach at the 99% level.

# Cook Islands Sea Cucumber Habitat Data

The task of this problem domain is to identify the habitat preferences of sea cucumbers. The

detailed descriptions are provided in Section 3.6 of Chapter 3.

Fixed centre-based approach

All 10 input variables were represented as three fuzzy values. The middle layers of the fuzzy

neural network were constructed with 30 nodes in layer 2, 10 nodes in layer 3 and 2 nodes in layer

4. The mean accuracy rates of ten-fold cross validation, and the standard deviations of these

values are shown in Table 5.7. 

Chi2 approach

A representative mapping table is shown in Table 5.6, which lists the number of intervals for all

attributes and the boundaries for each intervals after applying the Chi2 algorithm to the training

data from one of the ten data partitions . 
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Table 5.6. The number of intervals and interval boundaries after Phase 2 of the Chi2 method for

the Cook Islands Sea Cucumber data set

Attribute No. of Intervals Interval Boundaries

 Exposure 2 [0, 0], (0, 1]

%sand 2 [0, 10), [10, +4)

%rubble 2 [0, 90), [90, +4)

%consolidated

rubble

2 [0, 2.5), [2.5, +4)

%boulder 3 [0, 3.3), [3.3, 5), [5, +4)

%rock/pavement 5 [0, 10), [10, 14), [14, 80), [80, 85), [85, +4)

%live coral 5 [0, 6), [6, 10), [10, 16), [16, 20), [20, +4)

%dead coral 0 -

%mud/silt 0 -

%gravel 0 -

Ten repetitions of 10-fold cross validation were performed. The mean accuracy rates for training

and test set, and their standard deviations are shown in Table 5.7. 

Table 5.7. Accuracy rates (%) of the fuzzy neural networks for the Cook Islands Sea Cucumber

data set (standard deviations are in parentheses)

Membership functions

produced by the centre-based

approach

Membership functions

produced by the Chi2-based

approach

Acc. on training set (%) 95.26(5.0) 97.59(1.5)

Acc. on test set (%) 81.92(9.9) 88.33(7.6)

P-value (Acc. on test set) 0.039

It is seen that the Chi2-based FuNN performs significantly better than the centre-based FuNN. It

is also observed that the Chi2-based approach can result in smaller, and therefore more efficient,

neural networks, yet they still achieves superior results.

# Golf Course Problem 
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The task of this problem domain is to determine suitable sites of golf courses. The detailed

descriptions are provided in Section 3.5 of Chapter 3.

Fixed Centre-based Approach

All input attributes: altitude, rainfall, temperature, and distance were represented as five fuzzy

values each, as illustrated in Figure 5.6. Five fuzzy values: very unsuitable, unsuitable, neutral,

suitable, and very suitable, were created for describing the output variable – the suitability level,

as depicted in Figure 5.7. A fuzzy neural network, with 20 nodes in the condition elements layer,

20 nodes in the rule layer, and 5 nodes in the action elements layer was trained with 1000 samples

of the 153,036 total data examples using the backpropagation algorithm. The fuzzy neural network

was tested over the entire data set. Its evaluation is shown in Table 5.9 (a).  The Fuzzy neural

network was found to classify 85.6% correctly and another 14.2% of classifications were off by

one membership class.
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Chi2 approach

The number of intervals for all the attributes after applying Chi2 algorithm to 1000 training

samples are shown in Table 5.8, which also lists the boundaries for each intervals.

Table 5.8. The number of intervals and interval boundaries after Phase 2 of the Chi2 method for

the Golf Course Problem

Attribute No. of Intervals Interval Boundaries

 Altitude 5 [1, 113), [113, 515), [515, 791), [791, 917), [917, +4)

Rainfall 4 [500, 1125), [1125, 1958), [1958, 2792), [2792, +4)

Temperature 5 [10.5, 11.8), [11.8, 12.2), [12.2, 12.7), [12.7, 13.9), [12.7,

+4)

Distance 4 [0, 76.6), [76.6, 101.2), [101.2, 150.5), [150.5, +4)

The membership functions for all input attributes are shown in Figure 5.8. The  middle layers of

the fuzzy neural network were created with 18 nodes in the condition elements layer, 20  nodes

in the rule layer, and 5 nodes in the action elements layer to calculate the output membership

degrees.



128

0

0 . 5

1

M
em

be
rs

hi
p 

de
gr

ee

1 85 141    446   584 760 823 886 949 3203 Altitude

0

0 . 5

1

M
em

be
rs

hi
p 

de
gr

ee

500 968.75 1281.25 1749.75 2166.25 2740 2844 3000 Rainfall

0

0 . 5

1

M
em

be
rs

hi
p 

de
gr

ee

10.5  11.7 11.9 12.112.3 12.6 12.8        13.6        14.2                                             16.1 Temperature

0

0 . 5

1

M
em

be
rs

hi
p 

de
gr

ee

 0                         70.5 82.8 95.1 107.4    138.2   162.8                                         261
Distance

Figure 5.8. Membership functions for all the input variables of the Golf Course
Problem produced by the Chi2-based approach



129

The fuzzy neural network was trained with the 1,000 fuzzified samples. After the FuNN was

tested again over the entire data set, 92.0% of the values were correct over the full test set and

7.9% were off by one membership class as shown in Table 5.9 (b). It can be seen that the Chi2-

based FuNN had fewer total fuzzy values (18 versus 20) than the centre-based FuNN, but still had

the superior performance on testing (92% correct versus 86% correct for the centre-based FuNN).

Figure 5.9 (a,b) shows the fuzzy neural networks solution for the whole data set based on the

centre-based FuNN and the Chi2-based FuNN. 

Table 5.9. The test result for the fuzzy neural network for the Golf Course Problem (a)

membership functions produced by the centre-based approach (b) membership functions produced

by the Chi2-based approach

Error After Training 0.114 Error After Training 0.0798

No difference 131,060 (85.64%) No difference 140,818 (92.02%)

One class difference   21,729 (14.20%) One class difference 12,131  (7.927%)

Two classes difference      247 (0.16%) Two classes difference 80   (0.052%)

                                       (a)                                                                        (b)

                                      

1,000 samples model (85.6%) 
Centre-based FuNN

Figure 5.9 (a). Centre-based
FuNN solution on the whole
data set

1,000 samples model (92.0%)
Chi2-based FuNN

Figure 5.9 (b). Chi2-based
FuNN solution on the whole
data set
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5.3.3 Discussion

Most fuzzy set theorists have been interested in what can be done with already existing

membership functions, such as using genetic algorithms for adapting membership functions, and

have not been concerned with how one would construct appropriate  membership functions in the

first place. By far the most common method for assigning membership functions is based on

direct, subjective judgements by one or more experts. In this method, an expert rates objects on

a membership scale, and assigns membership values directly. However, this method has

shortcomings. First, it requires an expert (experts) to give answers that are precise (or close

enough) to capture subjective judgements. This is often infeasible for complex concepts. Second,

investigator bias (even unconscious bias) or inconsistency can creep in when the ratings need to

be made for conceptually complicated data sets. It is much harder to defend a membership rating

that comes solely from expert judgement when there is little to back up the procedure besides the

expert’s status as an expert. It is better to have a clear procedure in place that makes fuzzy

membership function selections as transparent as possible. The Chi2-based membership function

selection approach is one such approach. 

For a given attribute, the Chi2 algorithm divides the range of data values into intervals (clusters).

These intervals can be considered as fuzzy variables of the attribute. For example, in the

experiment with the Golf Course Problem, 5 intervals were found by the Chi2 algorithm for the

attribute Altitude as shown in Table 5.8. Then the attribute Altitude could be represented by the

5 fuzzy variables labelled as “very low”, “low”, “medium”, “high”, and “very high”. For a given

attribute, the Chi2 algorithm also provides the boundary values of the intervals, which determines

the widths of the membership functions associated with the fuzzy variables. Compared with using

a genetic algorithm for adjustment of membership functions, the Chi2-based membership function

selection provides an automatic selection of the number and widths of the membership functions,

which appears to be more natural, more efficient and less computationally expensive.  

Note that the Chi2-based membership function selection approach is only applicable for

continuous attributes. If there are mixed (continuous and discrete) attributes, the Chi2-based

membership function selection can be specified to operate only on the continuous attributes for

membership function construction.      

It is also important to emphasize that the Chi2-based membership function selection approach is
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not limited to applications of fuzzy neural networks. It can be generally applied to any fuzzy

systems in connection with the membership function selection. 

5.4 Summary
In this chapter, we have described how the P2 statistic-based discretization algorithm Chi2 can be

combined with neuro-fuzzy engineering to perform spatial data filtering and fuzzy membership

function selection.  Case studies have shown that spatial data filtering can successfully reduce

spatial data vertically (reducing the number of data items) and horizontally (reducing the number

of features), so that neural computation can be more efficiently performed. The Chi2-based

membership function selection method is a method to produce an appropriate selection of the

number and widths of the membership functions automatically via discretization. By means of

three experimental examinations, it has been shown that the Chi2-based membership function

selection method can not only provide an automatic selection of the number and widths of the

membership functions but also improve the generalization ability of the FuNN fuzzy neural

network.  

In the next chapter, issues concerning rule extraction and refinement techniques will be discussed.



Part III
Rule Extraction and Refinement

Part III is about issues concerning rule extraction and refinement, and it encompasses Chapters

6 – 8. In Chapter 6, an architecture and computational process for a market-based rule learning

(MBRL) system are proposed, with the description focusing on differences between the proposed

system and Holland’s classic classifier system. The steady-state behaviour of the proposed

system is analyzed mathematically and its time complexity is evaluated. Chapter 7 focuses on

how the proposed MBRL system is used as a rule-refinement tool to improve the quality of

extracted rules from fuzzy neural networks and feed-forward neural networks. Chapter 8 presents

the experiments and an empirical evaluation of the proposed MBRL system with six selected data

sets. For comparison and evaluation purposes, experiments using four existing rule extraction

techniques, namely C4.5 decision trees, the X2R rule generator, the NeuroLinear approach, and

the ReFuNN approach, are also described.
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Chapter 6
A Market-based Rule Learning System

6.1 Introduction
People have used markets for thousands of years to get things done. In human markets, shopping

centres get built, and new products are designed, all without a global controller or overseer. Any

systems that use the concept or certain features found in a market can be called “market-based

systems” (Clearwater 1996). In contrast to the use of a centralized controllers, a market-based

system does not need any of the agents in the system to know all the parameters of the system

in order for the overall system to function smoothly, instead through the simple interactions of

trading among individual agents, a global optimization can be achieved. This feature of market-

based systems offers promise (Zhou & Purvis 1999) for application to rule extraction and

refinement systems. By adopting the concept of economic trading behaviour among individual

commercial agents, a rule discovery system can be thought of as an artificial market where

individual rule agents are interacting and competing in order to achieve satisfactory behaviour

of the system.  

In this chapter, a ‘market trading’ technique is integrated with the techniques of rule discovery

and refinement for data mining. A classifier system-inspired model, the market-based rule

learning (MBRL) system is proposed. As described in Chapter 2, current classifier systems  share

major weaknesses: difficulties in interpretation, initial classifier chain generation, and initial

system parameter setting. This chapter specifically addresses how a proposed MBRL system

solves or lessens these difficulties. 

The three-layer structure of the MBRL system is described in Section 6.2, with emphasis on

differences in each of the layers compared with the classic classifier system. In Section 6.3, the

properties of the MBRL system that distinguish it from classifier systems are outlined. A

mathematical analysis of the behaviour of an MBRL system is presented in Section 6.4. The

results of this analysis are applied in a practical way, being used to determine the initial system

parameters for the experiments conducted in Chapter 7 and Chapter 8.     
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Figure 6.1. Model of a market-based rule
learning system

6.2 The Layers of the System
A market-based rule learning (MBRL) system is an adaptive learning system based on the market

principle and which is used to modify rule sets that have been previously generated by other

learning systems to improve the performance the quality of these rule sets in terms of predictive

accuracy and comprehensibility.

The MBRL system takes the basic structure of a classic classifier system but introduces some

changes in each of the layers. Like a classifier system, an MBRL system consists of three layers

(see Figure 6.1). The first layer sees to it that the system is able to provide answers to the

problems it is confronted with. This is the rule and message system. The second layer evaluates

the performance of the first layer. It can also adjust that layer’s performance by using the payoff

provided by the environment. This payoff is high if the behaviour of the system is good and low

if the behaviour is not. It cannot, however, change the behaviour in a creative way, as it can only

adjust things that are already present in the system. The algorithm used for this aspect is called

apportionment of credit. The task of the third layer is to try to find new ways in which the

learning system can perform its function. This is done by the genetic algorithm. 
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6.2.1 Rule and Message System

In general, the rules derived by means of rule extraction strategies are of the following form:

IF <condition1>&<condition2>&...<conditionN>

Then <action>

Classifier systems have traditionally used binary strings to represent rules and inputs. In contrast,

real-valued representations are adopted by the MBRL system.

As described in Chapter 2, the binary string representations are partially responsible for the

difficulty of setting initial system parameters. Many binary string related parameters, such as the

word length of the messages, the word length for each condition and action, and the probability

of selecting a wildcard (#) in a randomly generated population, must be set. If real-valued

representations are used, this parameter setting can be omitted. In addition some other

parameters, such as the number of conditions in the antecedent, can be set in a straightforward

fashion.

The binary-string rule representations also provide a barrier for inspecting rules transparently.

In order to exhibit the learning results on the application of the Wisconsin Breast Cancer

Database (UCI 1989), Wilson (2000) had to convert the rules with binary string representations

into real-valued representations. The MBRL system’s real-valued representation has an

advantage in terms of the interpretation of learned rules and avoids the additional overhead of

converting among different rule representations that are often involved with classifier systems.

Furthermore, continuous real-valued variables, such as temperature or age, are typical in real

world problems. It is more natural to use real-valued representations for these applications.  

6.2.2 Apportionment of Credit Algorithm

A classic classifier system employs the bucket brigade algorithm to modify strength of classifiers.

Strength modifications occur via three interrelated mechanisms:
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   Auction

   Reinforcement & punishment

   Taxation

In the MBRL system, an algorithm called the market-based trading algorithm, is used for

modifying the strengths of rules. Strength modification occurs via two mechanisms:

    Reinforcement & punishment

    Taxation

 

In the MBRL system when rules are matched against environmental messages or actions of other

rules, they do not participate in an activation auction. Instead, all matched rules are allowed to

perform their actions. The motivation for elimination of the auction mechanism comes from the

MBRL system’s principal role as a rule refinement tool. It is expected that the MBRL system

only deals with existing rule sets extracted using other learning techniques, such as ReFuNN and

NeuroLinear techniques, and thus the number of initial rules in the MBRL is not large (say, less

than 100). Under this assumption, the elimination of the auction mechanism gives each rule an

equal opportunity to perform and affect the outside world. 

Imagine a message from the external environment flowing to the system as the action of a

business startup that is offering shares on the stock market. The individual rules in the rule base

can be thought of as stock trader agents that may make an investment (buy shares) in the business

in order to gain a profit. If the number of trader agents that are interested in purchasing some

shares of the business is not large, these trader agents should be considered to have an equal

opportunity to make an investment without unnecessary competition in an auction. So when a

rule is activated, it can be imagined that a rule agent has made an investment to purchase some

shares of the business: its investment serves as a payment to the business shares provider, which

is the incoming environmental message in this case. In the meantime, the activated rule posts its

action on the message list. If its action triggers other rules, we can imagine that the shares are

sold to other agents, and the receipt is collected and transformed from these buyer agents.

However, if its action does not trigger any other rules, we can consider this as due to no trader

agents being interested in making investments on it, and no payment is received. If a rule
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sequence produces a ‘good’ (i.e. that which is desired) final output, it can be imagined that the

successful chains of trader agents led to the ultimate buyers – a reward is received from the

environment. However, if a rule sequence produces a ‘bad’ final output, we can think that the

unsuccessful chains of trader agents have not led to the ultimate buyers – no reward is given by

the environment. Apart from Wilson’s XCS (1995) model, which is a single-layer classifier

system that does not need to use the auction and the bucket brigade algorithm, the author has not

seen any other systems in the field that deliberately omit the auction mechanism.

As in classifier systems, each rule in the MBRL system maintains a record of its net worth, called

strength (wealth). When a rule matches an environmental message or an action of an other rule,

it becomes active. It then invests some of its wealth (proportional to its strength) called payment.

Every matched rule has to pay, so every matched rules gets its strength decreased by the amount

of its payment. The payment of rule i at iteration t, Pi(t), is calculated as:

                                                                                                     (6.1)P t C S ti payment i( ) ( )= ⋅

where,

Cpayment is a rule payment coefficient that determines what proportion of a rule’s strength will

be lost on a single step.

Si(t) is the strength of rule i at step t.

By comparing the above equation with equation (2.18) in Chapter 2, it can be seen that the setting

of two system parameters (bid1 and bid2), and the calculation of specificity are omitted in the

MBRL system.

In the market-based trading algorithm, the activated rules get their strengths decreased by the

amount of payment and the divided amounts paid to the contributing rules get added to their

strengths. Figure 6.2 shows an example of how the trading algorithm works. Rule C distributes

its payment to Rules A and B, which are the parties responsible for its activation. Usually the

payment is distributed equally among the contributing rules. In a subsequent time step, activated

Rule D makes its payment to the previously active Rule C. Finally, a reward comes into the

system and is paid to the last active rule, Rule D, if it produces a good (rewarded) final output.
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Figure 6.2. The market-based trading algorithm in action

As in classifier systems, there are also two types of taxes in the MBRL system: life tax and

activation tax. The life tax is applied to every rule on every iteration, just as in the classifier

system. Unlike the bid tax in the classifier system, though, the activation tax in the MBRL system

is designed to penalize those rules that are active frequently but are not be able to activate other

rules.   

In contrast to the complete strength equation (2.20) used by the bucket brigade algorithm, the

complete strength equation used in connection with the market-based trading algorithm is 

                        (6.2)S t S t t S t P t R t t S ti i life i i i activation i( ) ( ) ( ) ( ) ( ) ( )+ = − ⋅ − + − ⋅1

where,

Si(t) is the strength of rule i at the beginning of iteration t.

Si(t+1) is the strength of rule i at the end of iteration t.

Pi(t)  is the i-th rule’s payment during iteration t (as defined by equation 6.1).

It is only paid if rule i matches with an environment message or an action

of another rule.

Ri(t) is the reward given by the activated classifiers or that from the

environment. It is only be non-zero if rule i was active and able to activate

other rules or affect the environment on iteration t-1.

tactivation @ Si(t) is the rule activation tax during iteration t. It is only paid if rule i matches

with an environment message or an action of other rules.       

tlife is the rule life tax coefficient
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tactivation is the rule activation tax coefficient

The rewarding (paying) of rules for being activated is designed to reinforce chains of good rules.

Chains of rules will be necessary if the function that is computed by the learning system is

complex (that is, when a good result cannot be achieved by a single master rule). So if the

answers given by the chain of rules are usually good, the last rule (the one producing the output)

will get rewarded, and its strength will increase. The rules that help it to become activated will

then get  payments, so their strengths will increase as well. This way the good rewards flow down

the chain. Bad chains of rules will get no reward (they may even get a negative reward, which

can be called a punishment). Rules that activate the rule that produces the bad output will also

get very small payments, so over time their strength will decrease, and the strength of all the rules

in the chain will, too. Through such a trading system, the rule base can be refined by the genetic

algorithm which means that rules with high strength will survive, while rules with low strength

will die off. 

The system may not be able to respond properly to those inputs for which no chain of rules can

be established. In order for the system to be able to respond to such input, new rules must be

created, and that is where the genetic algorithm comes in. 

6.2.3 The Genetic Algorithm

In Holland’s classifier system, rules are represented by bit strings consisting of zeroes, ones, and

wildcards, so the GA operates on bit strings. However, in order to represent rules more naturally,

each gene in the MBRL system is an integer or floating-point number rather than a single bit.

Each chromosome is thus a list of real values. Note that the real-valued encoding methods for

specific problems will be described in Section 7.2.1 and Section 7.3.1 of Chapter 7.  

The basic genetic algorithm actions involved in the MBRL system are:

•  Selection

•  Crossover

•  Mutation

•  Scanning

•  Crowding
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Initialize Parameters

Generate initial population

Determine strengths for all population members
(execute many rule learning iterations)

Evaluate population statistics

Selection of parents

Crossover

Generate offspring and apply mutation

Scanning

Update population (Crowding)

Figure 6.3. Genetic algorithm in an MBRL system

The placement of these actions in the overall genetic algorithm is shown in Figure 6.3.

In Figure 6.3 there is a box that reads ‘Determine strengths for all population members’; however

in an MBRL system this determination does not occur in a single iteration. Instead, an MBRL

system determines the strengths and thus the ranking among the population members over

multiple iterations with the environment, during which strength changes occur by means of the

market-based trading algorithm. Only after multiple interactions with the environment will the

rule strengths represent a measure of how well the rule performs in the environment.  
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  0.3    -0.4    0.2    0.8    -0.3    -0.1    0.7    -0.3 

  0.7    -0.9    0.3    0.4    0.8     -0.2    0.1    0.5 

  0.3    -0.9    0.3    0.8    0.8     -0.1    0.7    0.5 

Parent 1

Parent 2

 Child1

  0.7    -0.4    0.2    0.4    -0.3     -0.2    0.1    -0.3  Child2

Figure 6.4. Illustration of Montana and Davis’s
crossover method

After the system parameters have been set, the initial population has been generated, and the

strengths of all population members have been determined, the following genetic algorithm

actions are performed:

#  Selection

Unlike roulette-wheel selection as used in Holland’s classifier system, rank-based selection

is employed in the MBRL system. In the rank-based selection, the individuals in the

population are ranked according to fitness, and the probability of each individual being

selected to reproduce depends on its rank rather than on its absolute fitness. There is no need

to scale fitnesses in this case, since absolute differences in fitness are ignored. 

#  Crossover

After a pair of parent chromosomes are selected from the current population, crossover is

performed with crossover probability Pc. 

For chromosomes formed by real-valued numbers, a variety of real-number crossover

operators can be employed (Beasley et al. 1993). Montana and Davis’s (1989) crossover

method is used here. The offspring chromosomes are created as follows: each gene in the

offspring is created by copying the corresponding gene from one or other parent at random.

This is illustrated in Figure 6.4.
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  0.3    -0.4    0.2    0.8    -0.3    -0.1    0.7    -0.3 

  0.3    -0.4    0.2    0.6    -0.3    -0.9    0.7    -0.1 

Before mutation

After mutation

Figure 6.5. Illustration of Davis’s mutation method.

#  Mutation

The two offspring are mutated with mutation probability Pm.   

For floating-point chromosomes used here, Davis’s (1991) creep mutation method is

employed. The mutation operator randomly selects n genes, and for each selected gene, adds

a randomly generated value to it. This randomly generated value is based on the distribution

of the gene values where the mutation is being applied. Suppose C = (c1,..., ci, ..., cn) is a

chromosome and ci 0 [ai, bi] is a gene to be mutated, where ai is a minimum value of variable

i, and bi is a maximum value of variable i. The gene, ci’, is produced by applying the equation:

                                                                                                   (6.3)C C
ei i G

'
( )= +

+ −

δ
1

where,

* is the maximum possible change in ci.  It can be calculated by taking the higher absolute

value of *(ai - ci)* and *(bi - ci )*. *  is positive if *(bi - ci )*$ *(ai - ci)*, and *  is negative

if *(bi - ci )*<*(ai - ci)*.

G  is a randomly generated standard Gaussian variable. The random Gaussian variable G is

generated independently for each variable i.

An example of a random value added to selected genes is shown in Figure 6.5. 

  

For integer chromosomes, the mutation operator is performed by randomly selecting n genes, and

for each selected gene, replacing it by a random integer selected from a given range, e.g. from

1 to 9.  

#  Scanning
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Whenever a new rule is generated by the GA, the population is scanned to see if there already

exists a rule with the same condition and action. If so, the new rule is discarded. Otherwise,

the new rule is ready to insert into the population by using the replacement method. The

scanning operation ensures that the resulting population consists entirely of structurally unique

rules.  

#  Crowding

Following Holland’s classifier system, De Jong’s (1975) crowding technique is used as a

replacement method in the MBRL system. 

The Euclidean distance is used here as a similarity measure for comparing real-valued

representation rules.  For the N-dimensional data points x and y, the Euclidean distance DE

is defined as:

                                                                                                     (6.4) D x yE i i
i

N

= −
=
∑ ( )2

1

Although the Euclidean distance is the default distance measure in most computer packages,

it is only one of many possible ways of measuring the distance or similarity between two

individual vectors: Legendre and Legendre (1983) have discussed 35 different similarity

measures. The reason for selecting the Euclidean distance here is because it is an appropriate

measure for the type of data (rules) being compared in the MBRL system. Sneath and Sokal

(1973) have shown that the Euclidean distance has a number of characteristics that can make

it dangerous to the unwary:

• It is scale dependent: any change in the unit of one of the variables could completely change

the pattern of distances. 

• Because the differences are squared, it is very sensitive to outliers, or to variables where the

size of the differences depends on their average value. 

The rules (ReFuNN rules and NeuroLinear rules) handled by the MBRL system do not contain

variables with units. For example, the elements of NeuroLinear rules are the coefficients

associated with the input variables, the discrete intermediate output values, and final output
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values. Therefore the Euclidean distance’s scale dependency problem does not apply to this

particular case.

For ReFuNN rules and NeuroLinear rules, the coefficients associated with input and output

variables are drawn from the weights of connections in the associated neural networks. When

the penalty term (specified in Chapter 4) is added to the error function during network

training, the weights of the connections are prevented from getting too large. As a result, the

value difference between a single weight and all other weights is relatively small. Therefore,

the Euclidean distance’s sensitivity to outliers is not so critical in MBRL systems. 

In summary, the GA in the MBRL system works as follows. The system is cycled many times,

with the trading algorithm determining the fitness of the rules. When the strengths of the rules

have stabilized, the genetic algorithm is invoked. Individual rules will be selected, crossed over

and/or mutated, and scanning and crowding are employed to arrive at a new population. The new

population is then used by the system. The system should not forget completely what it has learnt

between two steps of the genetic algorithm. Therefore the probability of crossover and mutation

must be chosen to be relatively low, so only a small part of the rule set should be supplanted

every generation. The set of rules will then change only slowly under the action of the genetic

algorithm.

By adding the genetic algorithm as a third layer on top of  the basic rule and message system and

market-based trading algorithm, the population of rules evolves over time, continually exploring

new regions of the space of possibilities. That causes the system not only to learn from

experience but also able to create new rules. 

6.3 The Properties of the System 
As a classifier system-inspired model, an MBRL system has the following properties when

compared with classifier systems:

# An MBRL system is a learning system that aims at evolving and refining existing rule sets in

order to lead to improved performance by increasing the accuracy of the rule inference and/or

improving the comprehensibility of the rule set. It is designed to refine the existing rule sets,
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hence gain a better understanding of the data and problem domains. The experiments

presented in Chapter 7 and Chapter 8 of applying the MBRL system to the rule sets extracted

by the ReFuNN and NeuroLinear techniques demonstrate that the MBRL system has the

capability to improve the quality of rule sets in terms of their predictive accuracy and

comprehensibility. In contrast, a classifier system is a machine learning system that learns

syntactically simple string rules (called classifiers) to guide its performance in an arbitrary

environment. In some respects, a classifier system is similar to a control system. In as much

as a control system (Dorf 1983) uses feedback to “control” or “adapt” its output for an

environment, a classifier system uses feedback to “teach” or “adapt” its classifiers in order to

lead to a satisfactory output. It is often the case that a classifier system is applied in a given

domain for the purpose of constructing a system that can perform a control or planing task.

Thus in the past years most of the successful classifier system applications have been in the

areas of direct control and planning. Only Holmes (1996), Saxon and Barry (2000), and

Wilson (2000) have actually investigated the interpretation of learned classifiers (rules) in

classifier systems.

# Although an MBRL system keeps the main structure of Holland’s classifier system model, it

introduces the fundamental change of importing existing rule sets generated by other rule

development techniques to the system. This not only makes the MBRL system begin with pre-

established rule sets (rather than a random set) but also enhances the likelihood  of being able

to interpret the evolved rules.

In the following chapters, the MBRL system is also investigated as a independent learning

model to accomplish computational tasks when no prior knowledge is given (working on

randomly selected rule sets). The experimental results in Chapter 7 and Chapter 8 demonstrate

that by employing appropriate rule presentations and formats, e.g. floating-point rule

representations and the format of NeuroLinear rules, the MBRL system is capable of

independently generating accurate and comprehensible rules that allow domain experts to

examine what has been learned.      

# In the field of classifier systems, only a few applications (de Boer 1994; Holmes 1996; Saxon

& Barry 2000; Wilson 2000) have been reported as employing these systems in the areas of
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machine learning and knowledge discovery. All of these applications employed single-layer

classifier systems (which means that classifiers only match messages from the environment

and immediately generate actions that modify the environment). In other words, except for

allocating payoffs directly to the classifiers that produce results, the bucket brigade algorithm

as defined by Holland (1986) did not play a role in these reported systems. From the system

applications point of view, the MBRL system’s evolution of two levels of rule sets initially

extracted from feed-forward neural networks is the first successful application that

demonstrates how the Apportionment of Credit Sub-system (in our case, the market-based

trading algorithm) can be applied to multiple levels of rule sets for the purpose of knowledge

discovery for real world problems. Compared with single-layer classifier systems, the MBRL

system evolving two levels of rule sets involves more complex interactions and operations

comprising message posting and matching, rule activation, payment clearing, reward

gathering, and rule strength updating. 

# With respect to the chain generation difficulty that exists in the bucket brigade algorithm, the

MBRL system counters the problem by adopting multiple-level rule bases generated by other

learning algorithms. In this thesis, the MBRL system has been tested on the basis of two-level

NeuroLinear-type rules. But applying the MBRL system to the multiple level rule bases that

can be extracted by the rule extraction technique proposed by (Setiono 1996) may be a fruitful

area for additional experimental investigation.

# As described earlier, the real-valued rule representations in the MBRL system lessen the

problem of setting initial system parameters found in the classifier systems. In the MBRL

system, the setting of binary string related parameters is omitted, and some parameters such

as the number of conditions in the antecedent can be easily set. However, the appropriate

values of other parameters such as the payment coefficient Cpayment, the life tax coefficient tlife,

and activation coefficient tactivation, still need to be further investigated. According to Goldberg

(1989a), “selection of classifier system parameters remains something of an art form;

however, useful design guides may be obtained by calculating expected steady-state

performance.” Therefore, a  mathematical analysis of the MBRL system in the steady state

is given in the next section.
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# Scalability is not an issue with the MBRL. The MBRL system is primarily designed as a post-

processing tool that refines rule sets that have been previously generated by other rule

development techniques. Thus the scalability of such a post-processing tool does not play a

crucial role for knowledge discovery and data mining applications. Scalability is more of a

challenge for pre-processing and discovery techniques that may be directly applied to very

large data sets.

6.4 Analysis of the Behaviour of the System
In order to gain a deeper understanding of the operation of an MBRL system, it is necessary to

analyse it mathematically. This analysis can be conducted from different points of view. We can

investigate what the best values of the system parameters are. We can also try to find out what

the behaviour of the system in the long run is, and how long will it take for the system to run?

Goldberg (1989a) analysed the steady-state behaviour of a classifier system with the bucket

brigade algorithm in. However no conclusive results were given on what are the best system

parameters, and no detailed analysis was provided in terms of the relationships among these

parameters. Since the market-based trading algorithm differs from the bucket brigade, we here

to investigate the steady-state behaviour of an MBRL system and the relationships among

different system parameters. 

6.4.1 Steady-state Behaviour

The MBRL system is a complex system in which many interactions take place. These interactions

consist of the activations of rules, the clearing of payments, receiving rewards, and updating

strengths. Although this process is difficult to analyse completely and mathematically, it is

possible to investigate the long-term behaviour of the system and especially to look carefully at

its steady-state behaviour. The steady state is an abstract state in which all the rules have a fixed

strength and a fixed payment. This is obviously something which will not happen quickly in any

practical learning system, since there will always be conflicting rules and random variations in

the input that cause perturbations. However, analysing the system’s steady-state behaviour will

help to estimate certain things about the expected behaviour of rules and  determine the values

of the parameters of the system.
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We therefore obtain the steady-state strength Sss by setting S(t+1) = S(t) = Sss, and the steady-

state payment Pss by setting P(t+1) = P(t) = Pss. It is assumed that in the steady state of the

system there are no conflicting rules, and a rule always gets the constant receipt Rss for every

action it generates. These assumptions are not unreasonable if we consider a learning system after

it has been trained fully.

# Market-based Rule Learning System without Life tax

First we analyse the system without the life tax. This means that the strength of non-active rules

is never reduced. A possibility that individuals that do nothing will dominate the population in

genetic search arises in this case. The steady-state strength Sss is given by:

                                                                                (6.5)S S P t S Rss ss ss activation ss ss= − − ⋅ +

where Sss, Pss and Rss are described as above, and tactivation is a tax coefficient for the activation tax

which must be paid by activated rules. The steady-state payment Pss is given by

                                                                                                                   (6.6)P c Sss payment ss= ⋅

where cpayment is the payment coefficient. A rule pays in proportion to its strength.

Combining equations (6.5) and (6.6), Sss is calculated by

                                                                                                      (6.7)S R
c tss

ss

payment activation

=
+

Here the strength is simply the receipt amplified by the gain coefficient 1/(cpayment+tactivation).

Combining equations (6.6) and (6.7), the steady payment is given by the following equation:

                                                                                                      (6.8)P
c R

c tss
payment ss

payment activation

=
⋅

+

Since tactivation is usually small with respect to the payment coefficient cpayment, the steady payment

value usually approaches the steady receipt value, i.e. Pss – Rss. It can also be seen that for bad

rules that do not get any reward at all, both the strength and the payment will go to zero. When

the fixed receipt Rss equals 1, Figure 6.6 shows the steady-state payment Pss for various values

of  cpayment and tactivation. From this figure it can be seen that the steady-state payment Pss is sensitive
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Figure 6.6. Values of the payments for
different payment coefficients and activation
taxes in the steady state (Rss=1)

Figure 6.7. Values of the strength for different
payment coefficients and activation taxes in the
steady state (Rss=1)

to the activation-tax coefficient tactivation.  Pss decreases sharply when tactivation increases a small

amount within the range of 0 to 0.2. Figure 6.7 shows how the strength Sss changes for different

values of cpayment and tactivation in the steady-state. When the value of cpayment lies between 0 and 0.2,

while tactivation is in the range of 0 to 0.06, the steady-state strength makes significant changes. But

when both constants are greater, the strength tends to be stable. Although Figures 6.6 and 6.7

only show what the values of steady-state payment Pss and steady-state strength Sss would be for

specific values of cpayment and tactivation, they reveal possible selection ranges for these two system

parameters.

# Market-based Rule Learning System with

Life tax
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In the case where a life tax exists, the equations describing the steady-state of the system will be

different from above. This is due to the fact that when the rule is not activated, its strength will

still decrease. In the steady state without life tax, we could ignore the cycles in which the rule

does not become active, since nothing happens. In the case where we have a life tax, we have to

take into account the number of cycles a rule is inactive between activations. 

We assume that the number of inactive cycles between two activations is E, so the steady-state

strength Sss with the existence of a life tax is given by:

                                                                   (6.9)S t S P t S Rss life
E

ss ss activation ss ss= − ⋅ − − ⋅ +( ) ( )1

where tlife is a tax coefficient for life tax, and Sss, Pss, Rss and tactivation are the same as in previous

descriptions. 

By using equations (6.9) and (6.6), the steady-state strength Sss with life tax is given by:

                                                            (6.10)S R
t c tss

ss

life
E

payment activation

=
− − ⋅ − −1 1 1(( ) ( ))

By using equation (6.10) and equation (6.6), the steady-state payment Pss with life tax is written

as follows:

                                                              (6.11)P
c R

t c tss
payment ss

life
E

payment activation

=
⋅

− − ⋅ − −1 1 1(( ) ( ))

It is clear that these two equations are exactly same as equations (6.7) and (6.8) for the case when

tlife is zero. In order to see the influence of the life tax coefficient tlife on the strength in the steady

state, Figure 6.8 shows the steady-state strength Sss for various values of tlife and various values

of inactive cycles E. The strengths were calculated by setting cpayment as 0.1, tactivation as 0.01 and

the fixed receipt Rss as 1. From this figure we can see that we must be very careful in choosing

tlife. This is because if this constant is too high, then in a short period of time the strength will

make very little change while the number of inactive steps E increases (which is not the desired

situation as more active rules should have higher strength than less active rules over longer

periods of time). This can be seen more clearly from Figure 6.9. When the life-tax coefficient tlife

has the value 0.002, the strength continuously decreases when the number of inactive cycles is
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Figure 6.8. Strengths in the steady state for different
values of life tax and number of inactive steps (Rss=1)
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Figure 6.9. Strengths in the steady state when the life tax
equals 0.002 and 0.04

increased to 50. But if the life tax coefficient tlife was set to 0.04, the strength Sss changes very

little after the number of cycles of inactivity is greater than 30. In the experiments described in

Chapter 8, the system in some cases is cycled up to 2000 times in order to stabilize the strength,

so the parameter tlife must be set to a very small value, such as 0.00001.

According to Goldberg’s analysis (1989a), a classifier system will remain stable (even with the

switching nonlinearity introduced by activating and deactivating rules) when 0#K # 2, where K

= cbid+tbid+tlife, cbid is the bid coefficient, tbid is the bid tax coefficient, and tlife is the life tax

coefficient. Although the MBRL system deliberately omits the auction mechanism from the
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bucket brigade algorithm, a situation in which all matched rules become active in the MBRL

system can be considered to be an extreme case of an auction in the bucket brigade, which is

when all matched rules win in the auction. So Goldberg’s assumption still applies to the MBRL

system in the following way: K = cpayment+tactivation+tlife. However, in practice we hold K # 1 to

enforce nonnegativity of the rule strength in the MBRL system. 

6.4.2 Starting Parameters

As we have seen in the previous section, the parameters of the system can have a significant

influence on performance. One can use the analysis just presented as a guide for estimating the

starting values of some system parameters such as the life tax coefficient tlife. Table 6.1 shows the

values of the most important parameters of the system that were used in the experiments which

will be described in Chapter 7 and Chapter 8.

Table 6.1. Some parameters used in the experiments

Name Value Description

initial strength 1 Initial strength of a rule after initialization

payment coefficient 0.1 Percentage of the strength of a rule that is used as a payment to

the rules that helped in activating it.

activation tax coefficient 0.01 Percentage of the strength that is used as a tax imposed on an

active rule

life tax coefficient 0.00001 Percentage of the strength that is used as a tax imposed on every

rule at every cycle of the system

good reward 1 Reward for a good answer

For the setting of various parameters associated with the genetic algorithm, such as population

size, crossover probability, and mutation probability, as discussed earlier in Chapter 2, there are

no definitive specifications concerning what is best. The MBRL system follows the parameter

setting guidelines given by De Jong (1975), Grefenstette (1986), and Schaffer et al (1989), which

are: crossover probability 0.7-0.95, mutation probability 0.001-0.01, and a small population size

20 -50.
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6.4.3 Time Complexity

The time it takes for an MBRL system to learn a given problem is another unknown factor. The

number of cycles needed to reach a state in which no major changes in performance take place

in the system depends on the problem domain. In the experiments of Chapter 8, we will see that

approximately 50 - 2000 cycles are needed.

The time complexity of a single cycle of an MBRL system (without genetic algorithm) in a

computer program is a straightforward calculation. In a typical implementation every message

in the message list is compared to every condition of every rule. After that the activated rules are

paid and the actions of the activated rules get placed in the new message list. Suppose M is the

number of messages in the message list, N is the number of rules in the rule base, k is the number

of conditions per rule, and l is the number of elements of a message. The comparison between

messages in the message list and rules in the rule base costs O(M@ N@ k@ l). The time taken for the

paying step is O(N) and the time for placing of messages is O(M@ l). It is evident that a system

with a larger size of the rule base will run more slowly than one with a smaller size.     

6.5 Summary
This chapter has proposed a three-layer market-based rule learning (MBRL) system which

consists of the rule and message system, the market-based trading algorithm, and a genetic

algorithm. As a classifier system-inspired model, although it takes the main structure of a

classifier system, it introduces the fundamental change of importing existing rule sets generated

by other rule extraction techniques to the system. Moreover, it presents various modifications in

each of the layers of the structure. With the change and modifications introduced by the MBRL

system, the problems existing in current classifier systems can be solved or lessened.

The guidelines for choosing the starting values of some important system parameters have been

derived by mathematically analysing the MBRL system’s steady-state behaviour. The

performance of the proposed MBRL system has been demonstrated by experiments that are

reported in Chapter 7 and Chapter 8. 
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In the next chapter, issues concerning how the MBRL system is used to evolve and refine the

extracted rules from fuzzy neural networks and feed-forward neural networks will be given in

detail.
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Figure 7.1. The general model of market-based rule
evolution based on fuzzy rules

Chapter 7
Rule Evolution and Refinement Using the Market-based

Rule Learning System

7.1 Introduction
In this chapter, the market-based rule learning (MBRL) system is combined with rule discovery

techniques to generate rules with higher accuracy and less complexity. Section 7.2 describes how

the MBRL system evolves and refines fuzzy rules extracted from fuzzy neural networks. Section

7.3 provides a detailed description of combining the MBRL system with extracted rules from

feed-forward neural networks. Section 7.4 summarizes the whole chapter.

 

7.2 Market-based Rule Evolution and Refinement Based on Extracted Rules

from Fuzzy Neural Networks 
The general model of market-based rule evolution and refinement based on fuzzy rules is shown

in Figure 7.1. There are two basic steps: 

1) discovery process: A fuzzy neural network (FuNN) is trained and the ReFuNN approach is

chosen to extract fuzzy rules. 

2) post processing: fuzzy rules are sifted and refined by the MBRL system.

For the general descriptions of the FuNN network and the ReFuNN approach, see Sections 2.3.4

and 2.5.5 of Chapter 2. Here, we focus on the post-processing operation: how the MBRL system

selects and adjusts existing fuzzy rules, and creates new fuzzy rules for a given problem. 

It should be pointed out that the accuracy of the FuNN fuzzy rules extracted by the ReFuNN
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technique is significantly worse than that of the original fuzzy neural network (FuNN) and the

performance of the original feed-forward neural network. For example, for the Iris classification

data with 10-fold cross validation, the fuzzy neural network FuNN using Chi2-based membership

functions achieved a mean 96.17% ±0.036 success rate on the testing samples, and the three-layer

feed-forward neural network using the PBS pruning scheme made correct predictions for

94.67%±0.061 of the testing samples (see details in Section 4.2.3). But the fuzzy rules extracted

from the trained FuNN by the ReFuNN technique had only a mean success rate of 76.14%±0.121

on the testing samples, which was 20.03% and 18.53% worse than the performance of the FuNN

and the feed-forward neural network at the 99% level, respectively. Thus it can be valuable to

use a rule-refinement tool such as the proposed MBRL system to improve the quality of the

ReFuNN-generated rules extracted from FuNN fuzzy neural networks.

7.2.1 Fuzzy Rule and Input Information Encoding

First we consider how to convert a particular format of fuzzy rules and environmental

information into appropriate rule representations and internal messages to make them applicable

to the MBRL system. In general, many search and learning applications use fixed-length, fixed-

order bit strings to encode candidate solutions. Typically, they are strings consisting of zeroes,

ones and wildcards. Here, However, a real-valued encoding scheme is adopted to represent

weighted fuzzy rules and fuzzy membership values.   

   

For a given FuNN network with x1,..., xn representing inputs for a given problem, then the

ReFuNN  technique can extract rules with the following form:  

Rk: If       x1 is A1
k with d1 and ... and xn is An

k with dn

      then  Y is C1  with r1
k and ... Y is Cj with rj

k

where A1
k, ... , An

k are fuzzy labels (values) associated with each of the input variables, d1, ..., dn

are numerical coefficients of importance attached to each of the fuzzy input variables, which are

the weights of the connections between the rule node k and the condition elements nodes in the

FuNN, C1, ..., Cj are fuzzy labels (values) associated with output variable Y, and r1
k,..., rj

k are the

certainty degrees attached to each fuzzy output variable, which are the weights of the connections

between the rule node k and the action element nodes in the FuNN. If “is not” appears in the rule,
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then it indicates that the numerical coefficient of importance d or the certainty degree C is a

negative value. In a FuNN network, each node in the rule layer represents a single fuzzy rule like

Rk. That is why the middle layer of a FuNN is named as a “rule layer”, which was described in

Section 2.3.3 of Chapter 2. 

The encoding of a fuzzy rule into the MRBL system is as follows. Each fuzzy rule is a list of real-

valued coefficients of importance associated with input fuzzy variables and certainty degrees

associated with output fuzzy variables. The values are read off the fuzzy rule and placed in a list.

For those fuzzy variables which do not appear in the fuzzy rule, a value of 0 is given in the

corresponding locations.  

Suppose for the Golf Course Problem, five fuzzy values (from very unsuitable to very suitable),

are created for describing the output (decision) variable. All the input variables: altitude, rainfall,

temperature and distance, are represented as five fuzzy values each. We use A, B, C, D, and E

to represent both input and output fuzzy values, with A being the lowest value and E being the

highest value.  A fuzzy rule is shown below:

If   <ALTITUDE is not A 16.5> and <RAINFALL is not C 2.2> 

     and <RAINFALL is E 2.42> and <TEMPERATURE is A 12.6> 

     and <TEMPERATURE is B 5.1> and <DISTANCE is not C 8.6> 

then <SUITABILITY is A 13.5> and <SUITABILITY is not B 20>

Then, it is converted to a list shown in Figure 7.2:

-16.5 0 0 0 0 0 0 -2.2 0 2.42 12.6 5.1 0 0 0 0 0 -8.6 0 0 13.5 -20 0 0 0

Altitude Rainfall Temperature Distance Suitability

Figure 7.2.  Illustration of converting a fuzzy rule into a list that serves as a rule 

representation in the market-based rule learning system

      

Here, since the linguistic labels B, C, D, E of the attribute “Altitude” are not used in the

antecedent part of the rule, zeroes are placed in their corresponding locations in the list.     
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In order to feed input information into the MBRL system, the input information must be decoded

into message form and then delivered to the system. Again a  real-valued encoding scheme is

employed. Fuzzification is done before the encoding process begins. The task of  fuzzification

is to take crisp input values and determine the degree to which they belong to each of the

appropriate fuzzy sets via membership functions. The encoding process takes the membership

function degrees of the input variables and places them on a list. The expected (targeted) solution

for the given input data is the last element in the list. This solution value will be used to compare

the system output to evaluate the performance of the rules. 

This is illustrated in the following example. Suppose for the Golf Course Problem, a particular

land block is considered to be an excellent site for a golf course; thus 4 is the expected output

class. The membership function values of the input variables to which these data belong is found

to be:

: A: very low (Altitude) = 0.3

: B:  low (Altitude) = 0.7

: C: medium (Altitude) = : D: high (Altitude) = : E: very high (Altitude) = 0

: A: very light (Rainfall) = : B:  light (Rainfall) = : C: medium (Rainfall) = 0

: D: heavy (Rainfall) = 0.9

: E: very heavy (Rainfall) = 0.1

: A: very low (Temperature) = 1.0

: B: low (Temperature) = : C: medium (Temperature) = : D: high (Temperature) = : E: very high (Temperature) = 0

: A: very near (Distance) = : B: near (Distance) = : C: somewhat distant (Distance) = : D: distant (Distance) = 0

: E: very distant (Distance) = 1.0

The encoded message is a list shown in Figure 7.3.

0.3 0.7 0 0 0 0 0 0 0.9 0.1 1.0 0 0 0 0 0 0 0 0 1.0 4

Altitude Rainfall Temperature Distance Solution

      Figure 7.3. Illustration of converting input information into a list that serves as an

      environmental message that is provided as input to the market-based rule learning system

7.2.2 Evolutionary Learning of Fuzzy Rules 

Since the fuzzy rules calculate an output directly from the input, there is no message list in the

system. Such a system is so-called a single-layer learning system. The definition of the market-
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based trading algorithm obviously works for rules triggering each other in the system. But what

happens when there is only input and output? 

At the input-stage, we put only one environmental message into the system. For those rules that

have become active, their strength is decreased. The decreased amount can be thought as a

payment to the outside world. At the input-stage, the net result is that the total strength of the

system decreases.

For the output, the situation is equally simple. Usually, the action that a fuzzy rule-based system

produces does not depend on one rule only, but on all the fired (executed) rules.  If the output

equals the expected solution, each of the active fuzzy rules is rewarded by the outside world with

an amount R. This amount is added to  their strengths: Sc’ = Sc + R, in which Sc  is the strength of

the active fuzzy rule that contributes to generate good output and Sc’ is its updated strength. If

the generated output does not match the expected solution, no reward is given. Notice that

negative rewards are not used in this system. This prevents the strength of rules from becoming

negative. 

For the GA procedure in the MBRL system based on fuzzy rules, the fuzzy rules are taken as

individuals in the population. Each individual is encoded as a chromosome consisting of genes,

and each gene in the chromosome is a floating-point number. An example is shown in Figure 7.2.

The strength of an individual rule is used as its fitness. The market-based trading algorithm

updates the fitness of the individual rules between two iterations of the genetic algorithm. In the

initial population S0 = {S1
0,..., SM

0,..., SL
0}, S1

0,..., SM
0 are M existing fuzzy rules generated by the

ReFuNN technique, SM+1
0,..., SL

0 are individuals created by random uniform variations around

{S1
0,..., SM

0}, and L is the initial population size. The initial fitness of SM+1
0,..., SL

0 is set to 0.

Following the basic structure of the MBRL system, the system architecture of an MBRL system

based on fuzzy rules is shown schematically in Figure 7.4. 
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Figure 7.4. Market-based rule learning system based on fuzzy rules

The market-based fuzzy rule evolution consists of the following steps:

1. Input an environmental message to the system. (This represents a training data sample.)

2. The “Match Maker” compares the environmental message to the antecedent parts of all fuzzy

rules and records all matches (fired rules). Issues regarding how to judge which fuzzy rules

are fired were discussed in Section 2.5.5 in Chapter 2.

3. Process the recorded active rules to produce the system’s behaviour. The procedures to

produce a final action from active fuzzy rules were given in Section 2.5.5 of Chapter 2. If the

final action is correct, which means the system output matches the expected solution, the

active fuzzy rules will get rewarded. If the final action is incorrect, no reward will be given.

4. Apply the market-based trading algorithm to reallocate the strengths of all the individual rules

in the fuzzy rule base.

5. If a predetermined number of training cycles N has been executed, then go to step 6.

Otherwise, go to step 1. (In all experiments to be described in Chapter 8, the MBRL system

was trained by all available training examples for a given problem. So the number of training
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cycles N equals the number of training examples in the training data set.) 

6. Apply the genetic algorithm by using the strengths of each of the individual rules as fitness

measurements to discover new rules, while replacing other, low-strength rules.

7. Replace the contents of the fuzzy rule base with a new generation of rules produced by the GA

procedure.

8. Apply the inference engine to evaluate the performance of the rules. If the inference

performance is satisfactory or the pre-specified maximum generation of GA has been reached,

end the process. Otherwise, go to step 1. The purpose of the inference engine is to examine

the system’s generalization ability, which is the ability to classify correctly samples from the

problem space. If the system meets a predetermined training accuracy, then the process

finishes.    

7.2.3 Method Illustration: Iris Classification Data

The description of the Iris data set can be found in Section 3.2 of Chapter 3, and a description of

the creation and training process of a FuNN module can be found in Section 5.3 in Chapter 5. 

By means of the Chi2-based membership function selection approach, for one partition of 10-fold

cross validation, attribute Sepal-width was represented by 5 fuzzy variables ranging from A to

E, attribute Petal-length was represented by 4 fuzzy variables ranging from A to D, and attribute

Petal-width was represented by 3 fuzzy variables ranging from A to C. By using the ReFuNN

procedure, 4 fuzzy rules were extracted. After encoding, they are displayed in Table 7.1.

Table 7.1. The fuzzy rule base after encoding (Iris Classification)

No Rules Strength

Sepal-width Petal-length Petal-width Flower Types

A B C D E A B C D A B C I II III

0 6.3 0 0 -4.7 0 0 0 0 7.9 -8.3 -9.9 17.2 0 -19.5 19.4 1.0

1 0 0 0 0 0 0 0 0 0 -2.8 0 0 -12.5 0 12.1 1.0

2 0 0 0 0 0 2.1 -7.0 0 0 0 0 -10.0 0 -20.4 0 1.0

3 0 0 0 0 0 0 9.9 0 0 0 -2.4 15.6 0 0 -17.6 1.0

        

The initial strengths for each single fuzzy rule were set to 1.0. The payment coefficient was 0.1,
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the activation-tax coefficient was 0.01, the life-tax coefficient was 0.00001, and the reward from

the environment was 1.0. If the environmental message listed below is introduced to the system:

0 0 0.5 0.5 0 0 0 0 1 0 0.07 0.93 2

then when compared to the condition parts of each of the rules, two rules are matched (i.e., the

overall degree of matching for the condition side of each rule is positive). They are:

      Matched rule numbers: {0, 3};

By using these two active rules, the system output was calculated to be the value 2, which was

same as the expected solution. Therefore, a reward of 1.0 was given to the active rules. For the

two active rules, their strengths were adjusted by the equation (6.2):

                            S’= 1 - 0.00001@ 1 - 0.1 @ 1 - 0.01 @ 1 + 1.0 = 1.8899911

For the remaining two inactive rules, only the life tax was taken out from their initial strengths:

                           S’ = (1-0.00001)@ 1 = 0.99999 

The updated strengths of each rule are shown in Table 7.2.

Table 7.2. The updated strengths of fuzzy rules after training with one example (Iris

Classification)

No Strength

0 1.889911

1 0.99999

2 0.99999

3 1.8899911

After the system was trained with 135 examples, the strengths obtained are shown in Table 7.3.
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Table 7.3. The updated strengths of the fuzzy rules after training with 135 examples (Iris

Classification)  

No Strength

0 9.107

1 0.998

2 9.127

3 2.962

                                 

When the strengths of the rules had stabilized, the genetic algorithm procedure was executed. The

population size was set to 40, the probability of crossover was 0.8, and the probability of

mutation was set to 0.001. The list of all the parameters used is shown in Table 7.4. 

Table 7.4. Values of the parameters used in the experiment of market-based rule evolution

starting with the ReFuNN-generated fuzzy rules in connection with the Iris data set 

Name Value Description

initial strength 1 Initial strength of a rule after initialization

payment coefficient 0.1 Percentage of the strength of a rule that is used as a payment to the rules that

helped in activating it.

activation tax coefficient 0.01 Percentage of the strength that is used as a tax imposed on an active rule

life tax coefficient 0.00001 Percentage of the strength that is used as a tax imposed on every rule at every

cycle of the system

bad reward 0 Reward for a bad answer

good reward 1 Reward for a good answer

initial rule size 4 Number of existing rules generated by the ReFuNN technique

initial population size 40 Number of individuals in the population

crossover probability 0.8 Probability of crossover between two chromosomes

mutation probability 0.01 Probability of mutation of a gene

training times 135 Number of training cycles of the system between two steps of the genetic

algorithm

maxgenerations 2000 Maximum number of generations (steps) of the genetic algorithm

crowding factor 3 Number of subpopulations tested to find most similar individual to new child

crowdingsubpop 10 Number of individuals in the subpopulation

Based on the four existing fuzzy rules, the average results over 50 experimental runs were

obtained and shown in Table 7.5. It can seen that, with the average number of 3.6 rules, the
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system classified an average 85.3% of the test examples correctly, which represented a significant

improvement of 18.73% at the 98.7% level of condifence.

Table 7.5. A comparison of accuracy performance, and number of rules for the ReFuNN-

generated rules before and after using the market-based procedure for one cross-validation trial

of the Iris data set (standard deviations are shown in parentheses)

ReFuNN Market-based evolution

starting with the ReFuNN-

generated rules

P-value

Acc. on the training set (%) 68.44(0.0) 87.08(10.9) 0.022

Acc. on the test set (%) 66.60(0.0) 85.33(9.8) 0.013

Number of rules 4(0.000) 3.6(0.894) 0.374

After the MBRL system learning, the initial fuzzy rule base was modified by the GA procedure.

The final fuzzy rule sets developed by the MBRL system display an interesting characteristic:

only a small proportion of rules (the rules with the highest fitnesses) had influence on the output

classification. A large proportion of rules in the final rule set did not make any contributions to

the classification tasks. However, this large proportion of rules provided a larger space for the

GA to search well performing rules. 

In the 50 experimental runs, 30 experiments produced sets of three fuzzy rules with the mean

predictive accuracy 88±11.9%. One representative new rule created by the MBRL system is:

If <petal-length is A, 2.15> and <petal-length is not B, 6.97> and <petal-

width is not C, 9.96>, 

then  <output is not Iris Setosa, 19.56>

7.3 Market-based Rule Evolution and Refinement Based on Extracted Rules

from Feed-forward Neural Networks 
In the past few years, there have been several efforts made to find effective algorithms to extract

rules from trained feed-forward neural networks. The NeuroLinear approach is one such effort.

It offers some advantages compared to other methods since it works well for problem domains

with continuous input attributes and thus does not require discretization of the input data. When


